1,784 research outputs found

    Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11.

    Get PDF
    Abstract UDP-N-acetyl-l-fucosamine is a precursor to l-fucosamine in the lipopolysaccharide of Pseudomonas aeruginosa serotype O11 and the capsule of Staphylococcus aureus type 5. We have demonstrated previously the involvement of three enzymes, WbjB, WbjC, and WbjD, in the biosynthesis of UDP-2-acetamido-2,6-dideoxy-l-galactose or UDP-N-acetyl-l-fucosamine (UDP-l-FucNAc). An intermediate compound from the coupled-reaction of WbjB-WbjC with the initial substrate UDP-2-acetamido-2-deoxy-α-d-glucose or UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) was purified, and the structure was determined by NMR spectroscopy to be UDP-2-acetamido-2,6-dideoxy-l-talose (UDP-l-PneNAc). WbjD could then convert this intermediate into a new product with the same mass, consistent with a C-2 epimerization reaction. Those results led us to propose a pathway for the biosynthesis of UDP-l-FucNAc; however, the exact enzymatic activity of each of these proteins has not been defined. Here, we describe a fast protein liquid chromatography (FPLC)-based anion-exchange procedure, which allowed the separation and purification of the products of C-2 epimerization due to WbjD. Also, the application of a cryogenically cooled probe in NMR spectrometry offers the greatest sensitivity for determining the structures of minute quantities of materials, allowing the identification of the final product of the pathway. Our results showed that WbjB is bifunctional, catalyzing firstly C-4, C-6 dehydration and secondly C-5 epimerization in the reaction with the substrate UDP-d-GlcNAc, producing two intermediates. WbjC is also bifunctional, catalyzing C-3 epimerization of the second intermediate followed by reduction at C-4. The FPLC-based procedure provided good resolution of the final product of WbjD reaction from its epimer/substrate UDP-l-PneNAc, and the use of the cryogenically cooled probe in NMR revealed unequivocally that the final product is UDP-l-FucNAc

    Microwave and Millimeter Wave Techniques

    Get PDF
    Contains reports on four research projects.Joint Services Electronics Program (Contract DAAB07-74-C-0630)National Science Foundation (Grant MPS-73-05043-A01

    MEMS-Based Communications Systems for Space-Based Applications

    Get PDF
    As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems

    Keeping Up With the Kids: Diffusion of Innovation in Pediatric Emergency Medicine Among Emergency Physicians

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137273/1/acem13185.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137273/2/acem13185_am.pd

    Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Chemistry 170 (2015): 49-60, doi:10.1016/j.marchem.2015.01.006.The natural radionuclides 231Pa and 230Th are incorporated into the marine sediment record by scavenging, or adsorption to various particle types, via chemical reactions that are not fully understood. Because these isotopes have potential value in tracing several oceanographic processes, we investigate the nature of scavenging using trans-Atlantic measurements of dissolved (<0.45 μm) and particulate (0.8-51 μm) 231Pa and 230Th, together with major particle composition. We find widespread impact of intense scavenging by authigenic Fe/Mn (hydr)oxides, in the form of hydrothermal particles emanating from the Mid-Atlantic ridge and particles resuspended from reducing conditions near the seafloor off the coast of West Africa. Biogenic opal was not found to be a significant scavenging phase for either element in this sample set, essentially because of its low abundance and small dynamic range at the studied sites. Distribution coefficients in shallow (< 200 m) depths are anomalously low which suggests either the unexpected result of a low scavenging intensity for organic matter or that, in water masses containing abundant organic-rich particles, a greater percentage of radionuclides exist in the colloidal or complexed phase. In addition to particle concentration, the oceanic distribution of particle types likely plays a significant role in the ultimate distribution of sedimentary 230Th and 231Pa.Cruise management for GA03 was funded by the U. S. National Science Foundation to W. Jenkins (OCE-0926423), E. Boyle (OCE-0926204), and G. Cutter (OCE-0926092). Radionuclide studies were supported by NSF (OCE-0927064 to LDEO, OCE-0926860 to WHOI, OCE- 0927757 to URI, and OCE-0927754 to UMN). Additional support came from the European Research Council (278705) to LFR and the Ford Foundation Predoctoral Fellowship to SMV. Particle studies were supported by NSF OCE-0963026 to PJL

    Prevalence, incidence, and progression of myopia of school children

    Get PDF
    PURPOSE. To determine the prevalence, incidence, and progression of myopia of Chinese children in Hong Kong. METHODS. A cross-sectional survey was initially conducted. A longitudinal follow-up study was then conducted 12 months later. RESULTS. A total of 7560 children of mean age 9.33 (95% confidence interval [CI] ϭ 9.11-9.45; range, 5-16) participated in the study. Mean spherical equivalent refraction (SER) was Ϫ0.33 D (SD ϭ 11.56; range, Ϫ13.13 to ϩ14.25 D). Myopia (SER Յ Ϫ0.50 D) was the most common refractive error and was found in 36.71% Ϯ 2.87% (SD) of children. Prevalence of myopia correlated positively with older age. Children aged 11 years were almost 15 times more likely to have myopia than were children younger than 7 years (Odds ratio [OR] ϭ 14.81; 95% CI ϭ 14.17-15.48). Incidence of myopia was 144.1 Ϯ 2.31 (SD) per 1000 primary school children per annum. Increasing age was correlated with increased incidence of myopia, with highest risk in children ages 11 years (OR ϭ 2.27; 95% CI ϭ 2.11-2.44). The average annual change in SER for children with myopia (SER Յ Ϫ0.50 D) was Ϫ0.63 D (SD ϭ 3.44) compared with Ϫ0.29 D (SD ϭ 2.96) for those who were not myopic at the beginning of the study (P Ͻ 0.001). CONCLUSIONS. The results show that the prevalence and progression of myopia in Hong Kong children was much higher than those previously reported in Western countries. The longterm socioeconomic impact of these findings warrants further studies. (Invest Ophthalmol Vis Sci

    Dissolved and particulate barium distributions along the US GEOTRACES North Atlantic and East Pacific zonal transects (GA03 and GP16): global implications for the marine barium cycle

    Get PDF
    Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(6), (2022): e2022GB007330, https://doi.org/10.1029/2022gb007330.Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1 in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess 230Th activities. Th-normalized pBaxs fluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1 average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxs burial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.The International GEOTRACES Programme is possible in part thanks to the support from the U.S. National Science Foundation (Grant OCE-1840868) to the Scientific Committee on Oceanic Research (SCOR). This research was supported by the National Science Foundation under Grant No. NSF OCE-0927951, NSF OCE-1137851, NSF OCE-1261214, and NSF OCE-1925503 to A. M. Shiller; NSF OCE-1829563 to R. F. Anderson; NSF OCE-0927064 and NSF OCE-1233688 to R. F. Anderson and M. Q. Fleisher; NSF OCE-0927754 to R. Lawrence Edwards; NSF OCE-1233903 to R. Lawrence Edwards and H. Cheng; NSF OCE-0926860 to L. F. Robinson; NSF OCE-0963026 and NSF OCE-1518110 to P. J. Lam; and NSF OCE-1232814 to B. S. Twining
    • …
    corecore