93 research outputs found
Phase Behavior of Colloidal Superballs: Shape Interpolation from Spheres to Cubes
The phase behavior of hard superballs is examined using molecular dynamics
within a deformable periodic simulation box. A superball's interior is defined
by the inequality , which provides a
versatile family of convex particles () with cube-like and
octahedron-like shapes as well as concave particles () with
octahedron-like shapes. Here, we consider the convex case with a deformation
parameter q between the sphere point (q = 1) and the cube (q = 1). We find that
the asphericity plays a significant role in the extent of cubatic ordering of
both the liquid and crystal phases. Calculation of the first few virial
coefficients shows that superballs that are visually similar to cubes can have
low-density equations of state closer to spheres than to cubes. Dense liquids
of superballs display cubatic orientational order that extends over several
particle lengths only for large q. Along the ordered, high-density equation of
state, superballs with 1 < q < 3 exhibit clear evidence of a phase transition
from a crystal state to a state with reduced long-ranged orientational order
upon the reduction of density. For , long-ranged orientational order
persists until the melting transition. The width of coexistence region between
the liquid and ordered, high-density phase decreases with q up to q = 4.0. The
structures of the high-density phases are examined using certain order
parameters, distribution functions, and orientational correlation functions. We
also find that a fixed simulation cell induces artificial phase transitions
that are out of equilibrium. Current fabrication techniques allow for the
synthesis of colloidal superballs, and thus the phase behavior of such systems
can be investigated experimentally.Comment: 33 pages, 14 figure
Inherent Structures for Soft Long-Range Interactions in Two-Dimensional Many-Particle Systems
We generate inherent structures, local potential-energy minima, of the
"-space overlap potential" in two-dimensional many-particle systems using a
cooling and quenching simulation technique. The ground states associated with
the -space overlap potential are stealthy ({\it i.e.,} completely suppress
single scattering of radiation for a range of wavelengths) and hyperuniform
({\it i.e.,} infinite wavelength density fluctuations vanish). However, we show
via quantitative metrics that the inherent structures exhibit a range of
stealthiness and hyperuniformity depending on the fraction of degrees of
freedom that are constrained. Inherent structures in two dimensions typically
contain five-particle rings, wavy grain boundaries, and vacancy-interstitial
defects. The structural and thermodynamic properties of inherent structures are
relatively insensitive to the temperature from which they are sampled,
signifying that the energy landscape is relatively flat and devoid of deep
wells. Using the nudged-elastic-band algorithm, we construct paths from
ground-state configurations to inherent structures and identify the transition
points between them. In addition, we use point patterns generated from a random
sequential addition (RSA) of hard disks, which are nearly stealthy, and examine
the particle rearrangements necessary to make the configurations absolutely
stealthy. We introduce a configurational proximity metric to show that only
small local, but collective, particle rearrangements are needed to drive
initial RSA configurations to stealthy disordered ground states. These results
lead to a more complete understanding of the unusual behaviors exhibited by the
family of "collective-coordinate" potentials to which the -space overlap
potential belongs.Comment: 36 pages, 16 figure
Recommended from our members
Adaptive, wideband analog-to-digital conversion for convergent communication systems
The exponential rate of advances in modern communication devices in the last several years have brought us higher levels of functionality and performance as well as reductions in physical size and power consumption. To continue this rate of advancement, next generation systems require wider bandwidth and higher resolution ADCs. Additionally, in order for ADCs to be used in a wide range of applications, reconfigurability and adaptability are critical features of future ADCs. Reconfigurable ADC architectures allow consolidation of receivers for multiple communication standards into one, providing size, power and functionality improvements over multiple discrete ADCs. This thesis presents a high performance track-and-hold block and reconfigurable high performance ADC for multi-functional communication applications. In the design of analog-to-digital converters (ADCs), the front-end track-and-hold or sample-and-hold is often one of the most challenging parts of the design. Open-loop designs with high sample rates are reaching the limits of their linearity. Presented here is a high-speed, high-resolution closed-loop track-and-hold in a 0.18um SiGe BiCMOS technology. The architecture provides both high linearity and high speed, with 98.7dB and 89.4dB SNDR at 50MS/s and 100MS/s, respectively. As these specifications evolve to meet customer demands, new, high performance ADCs are needed. To this end, an efficient parallel ΔΣ ADC architecture has been designed that achieves high performance in digital processes, while also providing additional architecture flexibility. This ADC, consisting of four parallel ΔΣ ADCs and a single pipeline ADC provides high performance and reconfigurablity. This ADC is suited to applications requiring not only wide-bandwidth, high resolution signal conversion but an on-the-fly reconfigurable resolution and bandwidth
Classical Disordered Ground States: Super-Ideal Gases, and Stealth and Equi-Luminous Materials
Using a collective coordinate numerical optimization procedure, we construct
ground-state configurations of interacting particle systems in various space
dimensions so that the scattering of radiation exactly matches a prescribed
pattern for a set of wave vectors. We show that the constructed ground states
are, counterintuitively, disordered (i.e., possess no long-range order) in the
infinite-volume limit. We focus on three classes of configurations with unique
radiation scattering characteristics: (i)``stealth'' materials, which are
transparent to incident radiation at certain wavelengths; (ii)``super-ideal''
gases, which scatter radiation identically to that of an ensemble of ideal gas
configurations for a selected set of wave vectors; and (iii)``equi-luminous''
materials, which scatter radiation equally intensely for a selected set of wave
vectors. We find that ground-state configurations have an increased tendency to
contain clusters of particles as one increases the prescribed luminosity.
Limitations and consequences of this procedure are detailed.Comment: 44 pages, 16 figures, revtek
Novel Ground-State Crystals with Controlled Vacancy Concentrations: From Kagom\'{e} to Honeycomb to Stripes
We introduce a one-parameter family, , of pair potential
functions with a single relative energy minimum that stabilize a range of
vacancy-riddled crystals as ground states. The "quintic potential" is a
short-ranged, nonnegative pair potential with a single local minimum of height
at unit distance and vanishes cubically at a distance of \rt. We have
developed this potential to produce ground states with the symmetry of the
triangular lattice while favoring the presence of vacancies. After an
exhaustive search using various optimization and simulation methods, we believe
that we have determined the ground states for all pressures, densities, and . For specific areas below 3\rt/2, the ground states of the
"quintic potential" include high-density and low-density triangular lattices,
kagom\'{e} and honeycomb crystals, and stripes. We find that these ground
states are mechanically stable but are difficult to self-assemble in computer
simulations without defects. For specific areas above 3\rt/2, these systems
have a ground-state phase diagram that corresponds to hard disks with radius
\rt. For the special case of H=0, a broad range of ground states is
available. Analysis of this case suggests that among many ground states, a
high-density triangular lattice, low-density triangular lattice, and striped
phases have the highest entropy for certain densities. The simplicity of this
potential makes it an attractive candidate for experimental realization with
application to the development of novel colloidal crystals or photonic
materials.Comment: 25 pages, 11 figure
Catalysts for long-life closed-cycle CO2 lasers
Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin (IV) oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-LaRC on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) achievement of 98% to 100% conversion of a stoichiometric mixture of CO and O2 to CO2 for 318 hours (greater than 1 x 10 to the 6th power seconds), continuous, at a catalyst temperature of 60 C, and (2) development of a technique verified in a 30-hour test, to prevent isotopic scrambling when CO-18 and O-18(2) are reacted in the presence of a common-isotope Pt/Sn O-16(2) catalyst
Peat Bog Wildfire Smoke Exposure in Rural North Carolina Is Associated with Cardiopulmonary Emergency Department Visits Assessed through Syndromic Surveillance
Background: In June 2008, burning peat deposits produced haze and air pollution far in excess of National Ambient Air Quality Standards, encroaching on rural communities of eastern North Carolina. Although the association of mortality and morbidity with exposure to urban air pollution is well established, the health effects associated with exposure to wildfire emissions are less well understood.
Objective: We investigated the effects of exposure on cardiorespiratory outcomes in the population affected by the fire.
Methods: We performed a population-based study using emergency department (ED) visits reported through the syndromic surveillance program NC DETECT (North Carolina Disease Event Tracking and Epidemiologic Collection Tool). We used aerosol optical depth measured by a satellite to determine a high-exposure window and distinguish counties most impacted by the dense smoke plume from surrounding referent counties. Poisson log-linear regression with a 5-day distributed lag was used to estimate changes in the cumulative relative risk (RR).
Results: In the exposed counties, significant increases in cumulative RR for asthma [1.65 (95% confidence interval, 1.25–2.1)], chronic obstructive pulmonary disease [1.73 (1.06–2.83)], and pneumonia and acute bronchitis [1.59 (1.07–2.34)] were observed. ED visits associated with cardiopulmonary symptoms [1.23 (1.06–1.43)] and heart failure [1.37 (1.01–1.85)] were also significantly increased.
Conclusions: Satellite data and syndromic surveillance were combined to assess the health impacts of wildfire smoke in rural counties with sparse air-quality monitoring. This is the first study to demonstrate both respiratory and cardiac effects after brief exposure to peat wildfire smoke
Adverse childhood experiences and prescription drug use in a cohort study of adult HMO patients
<p>Abstract</p> <p>Background</p> <p>Prescription drugs account for approximately 11% of national health expenditures. Prior research on adverse childhood experiences (ACEs), which include common forms of child maltreatment and related traumatic stressors, has linked them to numerous health problems. However, data about the relationship of these experiences to prescription drug use are scarce.</p> <p>Method</p> <p>We used the ACE Score (an integer count of 8 different categories of ACEs) as a measure of cumulative exposure to traumatic stress during childhood. We prospectively assessed the relationship of the Score to prescription drug use in a cohort of 15,033 adult HMO patients (mean follow-up: 6.1 years) and assessed mediation of this relationship by documented ACE-related health and social problems.</p> <p>Results</p> <p>Nearly 1.2 million prescriptions were recorded; prescriptions rates increased in a graded fashion as the ACE Score increased (p for trend < 0.0001). Compared to persons with an ACE Score of 0, persons with a Score ≥ 5 had rates increased by 40%; graded relationships were seen for all age groups (18–44, 45–64, and 65–89 years) (p for trend < 0.01). Graded relationships were observed for the risk of being in the upper decile of number of classes of drugs used; persons with scores of ≥ 5 had this risk increased 2-fold. Adjustment for ACE-related health problems reduced the strength of the associations by more than 60%.</p> <p>Conclusion</p> <p>ACEs substantially increase the number of prescriptions and classes of drugs used for as long as 7 or 8 decades after their occurrence. The increases in prescription drug use were largely mediated by documented ACE-related health and social problems.</p
Timing of immune escape linked to success or failure of vaccination
Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.<br /
- …