60 research outputs found

    The Allure of Technology: How France and California Promoted Electric Vehicles to Reduce Urban Air Pollution

    Get PDF
    All advanced industrialized societies face the problem of air pollution produced by motor vehicles. In spite of striking improvements in internal combustion engine technology, air pollution in most urban areas is still measured at levels determined to be harmful to human health. Throughout the 1990s and beyond, California and France both chose to improve air quality by means of technological innovation, adopting legislation that promoted clean vehicles, prominently among them, electric vehicles (EVs). In California, policymakers chose a technology-forcing approach, setting ambitious goals (e.g., zero emission vehicles), establishing strict deadlines and issuing penalties for non-compliance. The policy process in California called for substantial participation from the public, the media, the academic community and the interest groups affected by the regulation. The automobile and oil industries bitterly contested the regulation, in public and in the courts. In contrast, in France the policy process was non-adversarial, with minimal public participation and negligible debate in academic circles. We argue that California's stringent regulation spurred the development of innovative hybrid and fuel cell vehicles more effectively than the French approach. However, in spite of the differences, both California and France have been unable to put a substantial number of EVs on the road. Our comparison offers some broad lessons about how policy developments within a culture influence both the development of technology and the impact of humans on the environment.Environmental policy, Electric vehicles, Air pollution, Technology policy, Sustainable transport

    The Allure of Technology: How France and California Promoted Electric and Hybrid Vehicles to Reduce Urban Air Pollution

    Get PDF
    All advanced industrialized societies face the problem of air pollution produced by motor vehicles. In spite of striking improvements in internal combustion engine technology, air pollution in most urban areas is still measured at levels determined to be harmful to human health. Throughout the 1990s and beyond, California and France both chose to improve air quality by means of technological innovation, adopting legislation that promoted clean vehicles, prominently among them, electric vehicles (EVs). In California, policymakers chose a technology-forcing approach, setting ambitious goals (e.g., zero emission vehicles), establishing strict deadlines and issuing penalties for non-compliance. The policy process in California called for substantial participation from the public, the media, the academic community and the interest groups affected by the regulation. The automobile and oil industries bitterly contested the regulation, in public and in the courts. In contrast, in France the policy process was non-adversarial, with minimal public participation and negligible debate in academic circles. We argue that California\u27s stringent regulation spurred the development of innovative hybrid and fuel cell vehicles more effectively than the French approach. However, in spite of the differences, both California and France have been unable to put a substantial number of EVs on the road. Our comparison offers some broad lessons about how policy developments within a culture influence both the development of technology and the impact of humans on the environment. © Springer Science+Business Media, LLP 2007

    Calculation of the Green's function from high- and low-density series expansions for disordered transport

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/pra/abstract/10.1103/PhysRevA.29.2963We investigate density expansions for the configurationally averaged Green's function for a random walk on a (site) disordered lattice. Two-point Padé summation techniques are used in conjunction with scaling arguments to examine behavior near the percolation density. Recent proposals for the structure of the percolation cluster are discussed in light of the results

    Deeply conserved synteny resolves early events in vertebrate evolution

    Get PDF
    Although it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication. We resolve two distinct ancient duplications based on patterns of chromosomal conserved synteny. All extant vertebrates share the first duplication, which occurred in the mid/late Cambrian by autotetraploidization (that is, direct genome doubling). In contrast, the second duplication is found only in jawed vertebrates and occurred in the mid-late Ordovician by allotetraploidization (that is, genome duplication following interspecific hybridization) from two now-extinct progenitors. This complex genomic history parallels the diversification of vertebrate lineages in the fossil record

    The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission

    Get PDF
    This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ∼1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context

    SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    Get PDF
    By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw ∼ 3 at 40◦ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution

    Making Capitalism Work: Social Capital and Economic Growth in Italy, 1970-1995

    Full text link

    Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sedimentary rocks at Yellowknife Bay (Gale Crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 Å indicating little interlayer hydration. The Cumberland smectite has basal spacing at ~13.2 Å as well as ~10 Å. The ~13.2 Å spacing suggests a partially chloritized interlayer or interlayer Mg or Ca facilitating H_2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time
    corecore