109 research outputs found
Local seismicity of the Rainbow massif on the Mid‐Atlantic Ridge
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 1615-1630, doi:10.1002/2017JB015288.The Rainbow massif, an oceanic core complex located in a nontransform discontinuity on the Mid‐Atlantic Ridge (36°N), is notable for hosting high‐temperature hydrothermal discharge through ultramafic rocks. Here we report results from a 9 month microearthquake survey conducted with a network of 13 ocean bottom seismometers deployed on and around the Rainbow massif as part of the MARINER experiment in 2013–2014. High rates (~300 per day) of low‐magnitude (average ML ~ 0.5) microearthquakes were detected beneath the massif. The hypocenters do not cluster along deeply penetrating fault surfaces and do not exhibit mainshock/aftershock sequences, supporting the hypothesis that the faulting associated with the exhumation of the massif is currently inactive. Instead, the hypocenters demarcate a diffuse zone of continuous, low‐magnitude deformation at relatively shallow (< ~3 km) depths beneath the massif, sandwiched in between the seafloor and seismic reflectors interpreted to be magmatic sills driving hydrothermal convection. Most of the seismicity is located in regions where seismic refraction data indicate serpentinized ultramafic host rock, and although the seismic network we deployed was not capable of constraining the focal mechanism of most events, our analysis suggests that serpentinization may play an important role in microearthquake generation at the Rainbow massif.NSF Grant Numbers: OCE‐0961680, OCE‐09611512018-07-2
Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N-26°20′N)
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AG13, doi:10.1029/2012GC004454.We use air gun shots recorded by ocean bottom seismometers (OBSs) to generate a three-dimensional (3D) P-wave tomographic velocity model of the Trans-Atlantic Geotraverse (TAG) segment of the Mid-Atlantic Ridge, and to search for evidence of reflections from a shallow crustal fault interface. Near-vertical reflections were observed in some of the seismic records from OBSs deployed within the active seismicity zone defined by microearthquake hypocenters. Forward modeling of synthetic seismograms indicates that these reflections are consistent with a fault interface dipping at a low angle toward the ridge axis. Our observations suggest that the fault zone may extend beneath the volcanic blocks forming the eastern valley wall. Our 3D tomographic results show that the across-axis structural asymmetry associated with detachment faulting extends at least 15 km to the east of the ridge axis, indicating that detachment faulting and uplifting of deep lithologies has been occurring at the TAG segment for at least the last ∼1.35 Myr. The velocity model contains a 5 km by 8 km velocity anomaly within the detachment footwall. This anomaly, which is present beneath the active TAG hydrothermal mound, is characterized by a velocity inversion at 1.5–2.0 km below seafloor underlain by reduced P-wave velocities (∼6.2–6.5 km/s compared to surrounding areas ∼7.0–7.2 km/s) extending down to 3.5 km below seafloor. The velocity anomaly likely results from some combination of thermal and/or hydrothermal processes, and in either case our results suggest that hydrothermal fluids circulate within the upper section of the detachment footwall beneath the active mound.This research was supported by grants from the Chinese
National Natural Science Foundation (41076029, 41176053,
91028002) and the U.S.-NSF (OCE-0137329). M.Z. was supported
by China Scholarship Council for 6 months of cooperative
research at WHOI. J.P.C. acknowledges support from The
Andrew W. Mellon Foundation Endowed Fund for Innovative
Research.2013-05-0
Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35°45′–36°35′N)
Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 3560–3579, doi:10.1002/2016GC006433.Along-axis variations in melt supply and thermal structure can lead to significant variations in the mode of crustal accretion at mid-ocean ridges. We examine variations in seafloor volcanic and tectonic processes on the scale of individual ridge segments in a region of the slow spreading Mid-Atlantic Ridge (35°45′–36°35′N) centered on the Rainbow nontransform discontinuity (NTD). We use multibeam sonar backscatter amplitude data, taking advantage of multifold and multidirectional coverage from the MARINER geophysical study to create a gridded compilation of seafloor reflectivity, and interpret the sonar image within the context of other data to examine seafloor properties and identify volcanic flow fields and tectonic features. Along the spreading segments, differences in volcanic productivity, faulting, eruption style, and frequency correlate with inferred magma supply. Regions of low magma supply are associated with more widely spaced faults, and larger volcanic flow fields that are more easily identified in the backscatter image. Identified flow fields with the highest backscatter occur near the ends of ridge segments. Their relatively smooth topography contrasts with the more hummocky, cone-dominated terrain that dominates most of the neovolcanic zone. Patches of seafloor with high, moderately high, and low backscatter intensity across the Rainbow massif are spatially correlated with observations of basalt, gabbro and serpentinized peridotite, and sediment, respectively. Large detachment faults have repeatedly formed along the inside corners of the Rainbow NTD, producing a series of oceanic core complexes along the wake of the NTD. A new detachment fault is currently forming in the ridge segment just north of the now inactive Rainbow massif.National Science Foundation Grant Numbers: OCE-0961151, OCE-09616802017-03-0
Three-dimensional seismic structure of the Mid-Atlantic Ridge : an investigation of tectonic, magmatic, and hydrothermal processes in the Rainbow Area
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 122 (2017): 9580–9602, doi:10.1002/2017JB015051.To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.NSF Grant Numbers: OCE-0961151, OCE-09616802018-06-2
Recommended from our members
Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands
Understanding healthcare viral disease transmission and the effect of infection control interventions will inform current and future infection control protocols. In this study, a model was developed to predict virus concentration on nurses' hands using data from a bacteriophage tracer study conducted in Tucson, Arizona, in an urgent care facility. Surfaces were swabbed 2 hours, 3.5 hours, and 6 hours postseeding to measure virus spread over time. To estimate the full viral load that would have been present on hands without sampling, virus concentrations were summed across time points for 3.5- and 6-hour measurements. A stochastic discrete event model was developed to predict virus concentrations on nurses' hands, given a distribution of virus concentrations on surfaces and expected frequencies of hand-to-surface and orifice contacts and handwashing. Box plots and statistical hypothesis testing were used to compare the model-predicted and experimentally measured virus concentrations on nurses' hands. The model was validated with the experimental bacteriophage tracer data because the distribution for model-predicted virus concentrations on hands captured all observed value ranges, and interquartile ranges for model and experimental values overlapped for all comparison time points. Wilcoxon rank sum tests showed no significant differences in distributions of model-predicted and experimentally measured virus concentrations on hands. However, limitations in the tracer study indicate that more data are needed to instill more confidence in this validation. Next model development steps include addressing viral concentrations that would be found naturally in healthcare environments and measuring the risk reductions predicted for various infection control interventions.GOJO Industries, Inc.; Western Alliance to Expand Student Opportunities (WAESO) Louis Stokes Alliance for Minority Participation (LSAMP) Bridge to Doctorate (BD) National Science Foundation (NSF) [1608928]12 month embargo; published online: 13 February 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geology 45 (2017): 451-454, doi:10.1130/G38795.1.Hydrothermal circulation at mid-ocean ridge volcanic segments extracts heat from crustal magma bodies. However, the heat source driving hydrothermal circulation in ultramafic outcrops, where mantle rocks are exhumed in low-magma-supply environments, has remained enigmatic. Here we use a three-dimensional P-wave velocity model derived from active-source wide-angle refraction-reflection ocean bottom seismometer data and pre-stack depth-migrated images derived from multichannel seismic reflection data to investigate the internal structure of the Rainbow ultramafic massif, which is located in a non-transform discontinuity of the Mid-Atlantic Ridge. Seismic imaging reveals that the ultramafic rocks composing the Rainbow massif have been intruded by a large number of magmatic sills, distributed throughout the massif at depths of ∼2–10 km. These sills, which appear to be at varying stages of crystallization, can supply the heat needed to drive high-temperature hydrothermal circulation, and thus provide an explanation for the hydrothermal discharge observed in this ultramafic setting. Our results demonstrate that high-temperature hydrothermal systems can be driven by heat from deep-sourced magma even in exhumed ultramafic lithosphere with very low magma supply.This research was funded by National Science Foundation (NSF) grants OCE-0961680 and OCE-0961151
Recommended from our members
Modeling the role of fomites in a norovirus outbreak
Norovirus accounts for a large portion of the gastroenteritis disease burden, and outbreaks have occurred in a wide variety of environments. Understanding the role of fomites in norovirus transmission will inform behavioral interventions, such as hand washing and surface disinfection. The purpose of this study was to estimate the contribution of fomite-mediated exposures to infection and illness risks in outbreaks. A simulation model in discrete time that accounted for hand-to-porous surfaces, hand-to-nonporous surfaces, hand-to-mouth, -eyes, -nose, and hand washing events was used to predict 17 hr of simulated human behavior. Norovirus concentrations originated from monitoring contamination levels on surfaces during an outbreak on houseboats. To predict infection risk, two dose-response models (fractional Poisson and 2F1 hypergeometric) were used to capture a range of infection risks. A triangular distribution describing the conditional probability of illness given an infection was multiplied by modeled infection risks to estimate illness risks. Infection risks ranged from 70.22% to 72.20% and illness risks ranged from 21.29% to 70.36%. A sensitivity analysis revealed that the number of hand-to-mouth contacts and the number of hand washing events had strong relationships with model-predicted doses. Predicted illness risks overlapped with leisure setting and environmental attack rates reported in the literature. In the outbreak associated with the viral concentrations used in this study, attack rates ranged from 50% to 86%. This model suggests that fomites may have accounted for 25% to 82% of illnesses in this outbreak. Fomite-mediated exposures may contribute to a large portion of total attack rates in outbreaks involving multiple transmission modes. The findings of this study reinforce the importance of frequent fomite cleaning and hand washing, especially when ill persons are present.12 month embargo; published online: 04 Feb 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
The Kirkhouse Trust: Successes and Challenges in Twenty Years of Supporting Independent, Contemporary Grain Legume Breeding Projects in India and African Countries
This manuscript reviews two decades of projects funded by the Kirkhouse Trust (KT), a charity registered in the UK. KT was established to improve the productivity of legume crops important in African countries and in India. KT’s requirements for support are: (1) the research must be conducted by national scientists in their home institution, either a publicly funded agricultural research institute or a university; (2) the projects need to include a molecular biology component, which to date has mostly comprised the use of molecular markers for the selection of one or more target traits in a crop improvement programme; (3) the projects funded are included in consortia, to foster the creation of scientific communities and the sharing of knowledge and breeding resources. This account relates to the key achievements and challenges, reflects on the lessons learned and outlines future research priorities
Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10′N) : implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08004, doi:10.1029/2007GC001629.New seismic refraction data reveal that hydrothermal circulation at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge at 26°10′N is not driven by energy extracted from shallow or mid-crustal magmatic intrusions. Our results show that the TAG hydrothermal field is underlain by rocks with high seismic velocities typical of lower crustal gabbros and partially serpentinized peridotites at depth as shallow as 1 km, and we find no evidence for low seismic velocities associated with mid-crustal magma chambers. Our tomographic images support the hypothesis of Tivey et al. (2003) that the TAG field is located on the hanging wall of a detachment fault, and constrain the complex, dome-shaped subsurface geometry of the fault system. Modeling of our seismic velocity profiles indicates that the porosity of the detachment footwall increases after rotation during exhumation, which may enhance footwall cooling. However, heat extracted from the footwall is insufficient for sustaining long-term, high-temperature, hydrothermal circulation at TAG. These constraints indicate that the primary heat source for the TAG hydrothermal system must be a deep magma reservoir at or below the base of the crust.This research was supported by NSF
grant OCE-0137329
Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation
Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing memories, is a chronic debilitating condition in need of new treatment options. Current treatment guidelines recommend psychotherapy as first line management with only two drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related to depression and anxietywithout producing permanent remission. PTSD remains a significant public health problem with high morbidity and mortality requiring major advances in therapeutics. Early evidence
has emerged for the beneficial effects of psychedelics particularly in combination with psychotherapy for management of PTSD, including psilocybin,MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to therapy by increasing trust between therapist and patient, thus allowing for modification of
trauma related memories. Furthermore, research into the memory reconsolidation mechanisms has allowed for identification of various pharmacological targets to disrupt abnormally persistent memories. A number of preclinical and clinical studies have investigated novel and re-purposed pharmacological agents to disrupt fear
memory in PTSD. Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids have also shown potential for PTSD treatment. Here,we focus on the role of fear memory in the pathophysiology of PTSD and propose that many of these newtherapeutic strategies produce benefits through the effect on
fear memory. Evaluation of recent research findings suggests that while a number of drugs have shown promising results in preclinical studies and pilot clinical trials, the evidence from large scale clinical trials would be needed for these drugs to be incorporated in clinical practice
- …