7 research outputs found

    Reductions in Mesolimbic Dopamine Signaling and Aversion: Implications for Relapse and Learned Avoidance

    Get PDF
    The ability to adjust behavior appropriately following an aversive experience is essential for survival, yet variability in this process contributes to a wide range of disorders, including drug addiction. It is clear that proper approach and avoidance is regulated, in part, by the activity of the mesolimbic dopamine system. While the importance of this system as a critical modulator of reward learning has been extensively characterized, its involvement in directing aversion-related behaviors and learning is still poorly understood. Recent studies have revealed that aversive stimuli and their predictors cause rapid reductions in nucleus accumbens (NAc) dopamine concentrations. Furthermore, a normally appetitive stimulus that is made aversive through association with cocaine also decreases dopamine, and the magnitude of the expressed aversion predicts drug-taking. However, whether the presentation of a drug cue that reduces dopamine, and evokes a negative affective state, can motivate relapse is unknown. Here we demonstrate that the presentation of an aversive drug cue both reduces dopamine and causes cocaine-seeking. This finding is provocative because drug seeking in reinstatement designs is typically associated with increased dopamine signaling. Using a combination of fast scan cyclic voltammetry (FSCV) and in vivo electrophysiology we subsequently show that the presence of an aversive drug cue abolishes the dopaminergic encoding of other drug cues and alters NAc neuronal activity patterns. Importantly, a subpopulation of neurons that subsequently encode aspects of drug-seeking behavior increase their baseline firing rates during this aversive experience. We then examine the mechanistic regulation of dopamine signaling by aversive stimuli under more natural conditions. Using FSCV and site-specific behavioral pharmacology we demonstrate that blockade of ventral tegmental area kappa opioid receptors attenuates aversion-induced reductions in dopamine, and prevents proper avoidance learning caused by punishment. By maintaining D2 receptor occupancy within the NAc during punishment, we demonstrate the requirement of aversion-induced reductions in dopamine for aversive learning. Together, these studies inform an evolving model of striatal physiology. Our findings emphasize a role for both increases and decreases in dopamine signaling that modulate behavior by promoting the stimulus-specific activity of distinct striatal output pathways. The continued interrogation of this model may offer novel targets for therapeutic development aimed at treating neurodegenerative disease and drug addiction

    Drug Predictive Cues Activate Aversion-Sensitive Striatal Neurons That Encode Drug Seeking

    Get PDF
    Drug-associated cues have profound effects on an addict’s emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking

    Aversive Stimuli Drive Drug Seeking in a State of Low Dopamine Tone

    Get PDF
    Background Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the aversive stimuli that cause drug seeking is not well characterized. In a series of experiments, we scrutinized the subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine seeking. Additionally, we examined the midbrain regulation of both dopamine signaling and cocaine seeking by the stress-sensitive peptide, corticotropin releasing factor (CRF). Methods Combining fast-scan cyclic voltammetry with behavioral pharmacology, we examined the effect of intraoral quinine administration on nucleus accumbens dopamine signaling and hedonic expression in 21 male Sprague-Dawley rats. We tested the role of CRF in modulating aversion-induced changes in dopamine concentration and cocaine seeking by bilaterally infusing the CRF antagonist, CP-376395, into the ventral tegmental area (VTA). Results We found that quinine rapidly reduced dopamine signaling on two distinct time scales. We determined that CRF acted in the VTA to mediate this reduction on only one of these time scales. Further, we found that the reduction of dopamine tone and quinine-induced cocaine seeking were eliminated by blocking the actions of CRF in the VTA during the experience of the aversive stimulus. Conclusions These data demonstrate that stress-induced drug seeking can occur in a terminal environment of low dopamine tone that is dependent on a CRF-induced decrease in midbrain dopamine activity

    Corticosterone Acts in the Nucleus Accumbens to Enhance Dopamine Signaling and Potentiate Reinstatement of Cocaine Seeking

    Get PDF
    Stressful life events are important contributors to relapse in recovering cocaine addicts, but the mechanisms by which they influence motivational systems are poorly understood. Studies suggest that stress may “set the stage” for relapse by increasing the sensitivity of brain reward circuits to drug-associated stimuli. We examined the effects of stress and corticosterone on behavioral and neurochemical responses of rats to a cocaine prime after cocaine self-administration and extinction. Exposure of rats to acute electric footshock stress did not by itself reinstate drug-seeking behavior but potentiated reinstatement in response to a subthreshold dose of cocaine. This effect of stress was not observed in adrenalectomized animals, and was reproduced in nonstressed animals by administration of corticosterone at a dose that reproduced stress-induced plasma levels. Pretreatment with the glucocorticoid receptor antagonist RU38486 did not block the corticosterone effect. Corticosterone potentiated cocaine-induced increases in extracellular dopamine in the nucleus accumbens (NAc), and pharmacological blockade of NAc dopamine receptors blocked corticosterone-induced potentiation of reinstatement. Intra-accumbens administration of corticosterone reproduced the behavioral effects of stress and systemic corticosterone. Corticosterone treatment acutely decreased NAc dopamine clearance measured by fast-scan cyclic voltammetry, suggesting that inhibition of uptake2-mediated dopamine clearance may underlie corticosterone effects. Consistent with this hypothesis, intra-accumbens administration of the uptake2 inhibitor normetanephrine potentiated cocaine-induced reinstatement. Expression of organic cation transporter 3, a corticosterone-sensitive uptake2 transporter, was detected on NAc neurons. These findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake

    Concordant neurophysiological signatures of cognitive control in humans and rats

    No full text
    Progress towards understanding neural mechanisms in humans relevant to psychiatric conditions has been hindered by a lack of translationally-relevant cognitive tasks for laboratory animals. Accordingly, there is a critical need to develop parallel neurophysiological assessments of domains of cognition, such as cognitive control, in humans and laboratory animals. To address this, we developed a touchscreen-based cognitive (Eriksen Flanker) task in rats and used its key characteristics to construct a novel human version, with similar testing parameters and endpoints across species. We obtained continuous electroencephalogram (EEG) recordings, including local field potentials in rats, and compared electrophysiological signatures locked to stimulus onset and responses across species. We also assessed whether behavioral or physiological task effects were modulated by modafinil, which enhances aspects of cognitive function in humans. In both species, the task elicited expected flanker interference effects (reduced accuracy) during high-conflict trials. Across homologous neuroanatomical loci, stimulus-locked increases in theta power during high-conflict trials as well as error-related negative potentials were observed. These endpoints were not affected by modafinil in either species. Despite some species-specific patterns, our findings demonstrate the feasibility of a rat Flanker task as well as cross-species behavioral and neurophysiological similarities, which may enable novel insights into the neural correlates of healthy and aberrant behavior and provide mechanistic insights relevant to treatment
    corecore