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ABSTRACT 
REDUCTIONS IN MESOLIMBIC DOPAMINE SIGNALING AND AVERSION:  

IMPLICATIONS FOR RELAPSE AND LEARNED AVOIDANCE 
 
 

Mykel A. Robble 
 

Marquette University, 2017 
 
 

 The ability to adjust behavior appropriately following an aversive 
experience is essential for survival, yet variability in this process contributes to a 
wide range of disorders, including drug addiction. It is clear that proper approach 
and avoidance is regulated, in part, by the activity of the mesolimbic dopamine 
system. While the importance of this system as a critical modulator of reward 
learning has been extensively characterized, its involvement in directing aversion-
related behaviors and learning is still poorly understood.  
 Recent studies have revealed that aversive stimuli and their predictors 
cause rapid reductions in nucleus accumbens (NAc) dopamine concentrations. 
Furthermore, a normally appetitive stimulus that is made aversive through 
association with cocaine also decreases dopamine, and the magnitude of the 
expressed aversion predicts drug-taking. However, whether the presentation of a 
drug cue that reduces dopamine, and evokes a negative affective state, can 
motivate relapse is unknown.  
 Here we demonstrate that the presentation of an aversive drug cue both 
reduces dopamine and causes cocaine-seeking. This finding is provocative 
because drug seeking in reinstatement designs is typically associated with 
increased dopamine signaling. Using a combination of fast scan cyclic 
voltammetry (FSCV) and in vivo electrophysiology we subsequently show that the 
presence of an aversive drug cue abolishes the dopaminergic encoding of other 
drug cues and alters NAc neuronal activity patterns. Importantly, a subpopulation 
of neurons that subsequently encode aspects of drug-seeking behavior increase 
their baseline firing rates during this aversive experience.  
 We then examine the mechanistic regulation of dopamine signaling by 
aversive stimuli under more natural conditions. Using FSCV and site-specific 
behavioral pharmacology we demonstrate that blockade of ventral tegmental area 
kappa opioid receptors attenuates aversion-induced reductions in dopamine, and 
prevents proper avoidance learning caused by punishment. By maintaining D2 
receptor occupancy within the NAc during punishment, we demonstrate the 
requirement of aversion-induced reductions in dopamine for aversive learning.    
 Together, these studies inform an evolving model of striatal physiology. 
Our findings emphasize a role for both increases and decreases in dopamine 
signaling that modulate behavior by promoting the stimulus-specific activity of 
distinct striatal output pathways. The continued interrogation of this model may 
offer novel targets for therapeutic development aimed at treating 
neurodegenerative disease and drug addiction. 
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CHAPTER I 
 

INTRODUCTION 
 

  
General Introduction 
 
 
 Learning proper approach and avoidance behavior is a fundamental 

process that is critical for survival. Dysfunction in these learning processes 

results in aberrant approach and avoidance behaviors that are the hallmark of 

many diverse neuropsychiatric disease states. While considerable progress has 

been made characterizing the neural systems that guide reward and approach, 

the neural regulation of aversion and avoidance are poorly understood. 

Understanding these processes requires an understanding of the brain’s reward 

circuitry, including the mesolimbic dopamine system. The following is a detailed 

account of experimental evidence implicating a role for the mesolimbic dopamine 

system in aversion-driven behavior. 

 
 
Early Indications that Dopamine Regulates Reward 
  
 
 The serendipitous observation that a rat will press a lever for electrical 

brain stimulation (Olds & Milner, 1954) was a breakthrough finding for the study 

of the neurological systems that govern reward. Initially, the rewarding nature of 

this stimulation was thought to be controlled by the lateral hypothalamus, an area 

where electrical stimulation is such a powerful reward that rats will continue to 

respond even in the face of punishment by painful electric foot shock (Olds, 

1958). However, the fact that the lateral hypothalamus is traversed by many 
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fibers of passage prompted researchers to suggest that electrical brain 

stimulation may produce its powerful rewarding effects by activating other 

neurological systems outside of this locus (Nieuwenhuys, Geeraedts, & Veening, 

1982; Veening et al, 1982). These effects were subsequently attributed to 

stimulation of the medial forebrain bundle, as it was revealed that rats respond 

for electrical stimulation of multiple sites along this fiber tract (Rompre & 

Miliaressis, 1985; Call, Micco, & Berntson, 1974). The demonstration that 

pharmacological manipulations of dopamine with systemic antagonists blocked 

brain stimulation reward (Fouriezos & Wise, 1978), coupled with the knowledge 

that dopaminergic axons are part of the medial forebrain bundle (Millhouse, 

1969), led to the emergence of the dopamine system as a likely candidate for 

mediating the rewarding effects of electrical stimulation of the medial forebrain 

bundle. The evolving view that brain dopamine systems mediate the rewarding 

effects of electrical brain stimulation was further corroborated by the observation 

that electrical stimulation of the ventral tegmental area (VTA) also supported self-

stimulation behavior in the rat, and that the boundaries of effective stimulation 

clearly mapped onto the anatomical boundaries of the A9 and A10 dopaminergic 

cells that comprise the mesocorticolimbic and nigrostriatal dopamine system 

(Corbett & Wise, 1980).  

 
 
Anatomy of the Mesolimbic Dopamine System  
  
 
 Much of the study of motivated behavior has focused on midbrain 

dopamine neurons in the VTA, originally called A10 dopamine neurons. These 
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neurons are tonically active, with firing rates from 1-5Hz, and exhibit stimulus 

driven phasic burst firing and pauses in activity (Schultz, 1997; Cooper, 2002). 

VTA dopamine neurons send dopaminergic projections to various brain regions, 

including the amygdala, prefrontal cortex, septum, hippocampus, and cingulate 

cortex (Ikemoto, 2007). The most dense dopaminergic project terminates in the 

nucleus accumbens, an area commonly thought of as a site of limbic motor 

integration (Mogenson, Jones, & Kim, 1980; Swanson, 1982; Oades & Halliday, 

1987; Figure 1.1). Based on histological differences, the nucleus accumbens is 

divided into two sub regions, the core and the shell (Zaborski et al, 1985). The 

core is thought to be important for motivated behavior drive by associative 

processes, while the shell is involved in primary reinforcement (Cardinal, 

Parkinson, Hall, & Everitt, 2002). The major output neurons of the nucleus 

accumbens are GABAergic medium spiny neurons (MSNs). These neurons can 

be classified into two distinct populations based on whether they express D1-like 

or D2-like dopamine receptors, as estimates indicate only 5% express both 

receptor types (Bertran-Gonzalez et al, 2008). D1-like receptors have a low 

affinity for dopamine, in the micromolar range, while D2-like receptors have a 

high affinity for dopamine, in the nanomolar range (Rice & Cragg, 2008). MSNs 

also differ in terms of their projection targets. D1-expressing MSNs 

predominantly project to the ventral pallidum (Kupchik et al, 2015) and VTA 

(Bocklisch et al, 2013), while D2-expressing MSNs predominantly project to the 

ventral pallidum (Wall, Parra, Callaway, & Kreitzer, 2013; Kupchik et al, 2015). 
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These separate populations of output neurons regulate distinct behaviors 

(Kravitz, Tye, & Kreitzer, 2012). 

 

 

 

 

 The nucleus accumbens receives glutamatergic input from several brain 

areas, including the prefrontal cortex, amygdala, lateral hypothalamus, 

hippocampus, and VTA (Maldonado-Irizarry, Swanson, & Kelley, 1995; Floresco, 

Todd, & Grace, 2001; McFarland, Lapish, & Kalivas, 2003; Stuber et al, 2011; Qi 

et al, 2016). It is thought that dopamine receptor activation on MSNs alters the 

Figure 1.1. Anatomy of the mesolimbic dopamine system. Midbrain dopamine 
neurons send projections to various forebrain nuclei. The mesocortical pathway is 
shown in blue, and the nigrostriatal pathway is shown in red. The most dense 
dopaminergic projection from the ventral tegmental area terminates in the 
nucleus accumbens and comprises the mesolimbic dopamine system (green). This 
pathway is a critical regulator of motivated behavior. Adapted from Arias-Carrión 
et al, 2010. 
 



5 
 

sensitivity to glutamatergic drive to influence output signaling (Surmeier, Ding, 

Day, Wang, & Shen, 2007). Within the nucleus accumbens there are local 

GABAergic and cholinergic interneuron populations that may regulate MSNs 

activity (Sadikot, & Sasseville, 1997; Alcantara, Chen, Herring, Mendenhall, & 

Berlanga, 2003). Furthermore, the distinct MSN subpopulations make collateral 

inhibitory connections with each other (Dobbs et al, 2016). Understanding the 

functional connectivity of the nucleus accumbens is vital to the understanding of 

the role of this structure in the processing of rewarding and aversive stimuli, and 

associated cues, and how these stimuli guide behavior and learning. 

 
 
The Emergence of the Anhedonia Hypothesis 
  
 
 Electrical brain stimulation provided a pure framework for the study of 

reward, and this framework allowed for theoretical integration of other 

observations of the impact of dopaminergic pharmacological manipulation on 

natural rewards and drugs of abuse. At the time, evidence was mounting that 

dopamine antagonists substantially reduce the reinforcing efficacy of intravenous 

cocaine and amphetamine, as well as that of food rewards (Yokel & Wise, 1976; 

de Wit & Wise, 1977; Wise & Schwartz, 1981; Ettenberg & Camp, 1986; for 

review see: Ettenberg, 1989). Taken together, these studies support the 

interpretation that dopamine neurotransmission is a critical component of reward. 

Roy Wise classically articulated these ideas by presenting the “anhedonia 

hypothesis” (Wise, 1982). Wise posited that the dopamine system was a 

common pathway that all rewarding stimuli act on. Furthermore, he stated that 
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dopamine was the neurochemical basis for the sensation of pleasure that is 

evoked by rewarding stimuli, and that the decrease in responding for food, drugs, 

or electrical brain stimulation caused by dopamine antagonists results from a 

decrease in the rewarding value of these stimuli. This hypothesis was the first 

formal explanation of the neurological basis of reward, and became the prevailing 

view of the time. Importantly, it had clinical relevance for Parkinson’s disease 

(Wise 1982), as pharmacological manipulations that reduce dopamine signaling 

produce a Parkinson’s-like state in the rat, and it would become fundamental to 

theoretical explanations of drug addiction (Bozarth and Wise, 1987).  

 Studies measuring terminal dopamine release by in vivo microdialysis 

largely supported the anhedonia hypothesis. Intra-VTA microinjections of opioid 

receptor agonists increased the rewarding value of electrical brain stimulation 

(Jenck, Gratton, & Wise, 1987), and elevated ventral striatal dopamine 

concentrations (Devine et al, 1993). Other drugs of abuse, such as cocaine, and 

natural rewards, such as food, were also shown to increase ventral striatal 

dopamine (Hernandez & Hoebel, 1988). Together, these studies were consistent 

with the hypothesis that the modulation of terminal dopamine release following 

the experience of either natural or pharmacological rewards creates the 

subjective experience of pleasure.  

 
 
Challenges to the Anhedonia Hypothesis 
  
 
 The potential role of dopamine in mediating pleasure that was posited in 

the anhedonia hypothesis was challenged in several seminal studies. One critical 
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observation was made using taste reactivity to assess hedonic responses to 

sucrose. When rodents, or infant primates and humans, receive a sweet taste 

they make stereotypical orofacial reactions. Conversely, aversive tastants evoke 

a different set of stereotypical responses. These responses are quantifiable and 

reflective of the hedonic value of the tastant (Grill and Norgren, 1978; Figure 1.2). 

 
 

 
Figure 1.2. Taste reactivity. Characterization of stereotyped orofacial responses to 
tastants allows for the assessment of the neural encoding of hedonic processing without 
the potential confound of learning or goal-directed action. Left: Appetitive Taste 
Reactivity. Lateral tongue protrusions are reliably evoked by palatable taste stimuli. 
Right: Aversive Taste Reactivity. Rejection responses are reliably elicited by aversive 
stimuli.  
 
 
Using this behavioral assessment, Berridge, Venier, and Robinson (1989) 

examined the impact of dopamine depletion caused by 6-hydroxydopamine (6-

OHDA) treatment in the midbrain on the hedonic value of sucrose in rats. 

Midbrain dopamine depleted rats will not respond for food rewards, nor will they 

consume food presented to them, despite retaining the motor capacity to perform 

such responses (Berridge & Robinson, 1998). As was the case with dopamine 
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antagonists, these deficits were previously explained by the anhedonia 

hypothesis. However, dopamine depletion was shown to have no effect on taste 

reactivity responses when the tastant was intraorally infused, removing the 

requirement for goal-directed action. This observation directly contradicted the 

hypothesis that dopamine amplifies, or is responsible for, the hedonic aspect of 

reward. These findings were corroborated by the demonstration that mice that 

cannot produce dopamine still prefer sucrose to water. Saccharin, a non-caloric 

sweet taste, was also examined and preferred over water, ruling out the caloric 

content of sucrose as a potential explanation (Cannon & Palmiter, 2003). 

Together these studies indicated that dopamine does not mediate the hedonic 

aspect of rewards. Rather, they suggest that its role in reward processing is more 

complex and is dissociable from hedonics.  

 The anhedonia hypothesis was further challenged by Cousins and 

Salamone (1994). In a concurrent choice design, rats had the option to lever 

press for food pellets on a low fixed ratio requirement or free access to standard 

lab chow. On alternating days, the choice was removed and the only option was 

to lever press for food pellets. Using this elegant paradigm it was demonstrated 

that nucleus accumbens dopamine depletion resulted in reduced lever pressing 

and increased standard chow consumption on days when both choices were 

available. However, on days when lever pressing was the only available option, 

nucleus accumbens dopamine depletion had no effect on responding. In a 

subsequent study, this group showed that dopamine depletion did not alter 

responding for food when the response requirement was low. Rather, dopamine 
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depletion specifically impaired responding when the required amount of work was 

high. Furthermore, sated rats, which have reduced motivation to respond for 

food, were shown to exhibit a reduction in responding regardless of the work 

requirement (Aberman & Salamone, 1999). Together these studies favor the 

more nuanced view that, rather than being a pleasure neurochemical, or even 

being responsible for the motivation to obtain rewards, dopamine is involved in 

the allocation of effort and effort-based decision making.  

 These critical experiments represent major challenges to the original view 

that dopamine is central to hedonic perception. Through the use of elegant 

experiments designed to dissociate the actions of dopamine under specific 

circumstances, it became clear that the anhedonia hypothesis was insufficient to 

explain the role of this neurochemical in reward-seeking behavior. In light of this 

realization, new theories that offered a more nuanced and precise explanation of 

the role of dopamine in reward-related behaviors emerged and gained 

prominence.  

 
 
Dopamine and Learning 
  
 
 Following the challenges to the anhedonia hypothesis, several studies 

examined the possibility that dopamine guides motivated behavior by promoting 

appetitive association. These experiments involved classical conditioning 

procedures in which a previously neutral stimulus becomes a conditioned 

stimulus (CS) when it is paired with reward (US) delivery/availability. Through 

repeated pairings, animals learn that the CS predicts the US, as the CS begins to 
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elicit a response (Pavlov, 1927). In many cases, it was observed that the CS 

would elicit anticipatory or preparatory behaviors following learning, as if the CS 

has become a substitute for the reward (Dickinson, 1980; Schultz, 1997). 

Observations that pharmacological dopamine depletions produced deficits in 

reward seeking or approach behavior (Wise 1982; Beninger 1983), but did not 

change the hedonic value of the reward itself (Berridge & Robinson, 1998; 

Berridge et al, 1989) suggested a possible role for DA in learning. 

 To determine if dopamine is involved in reward learning, researchers 

began to use in vivo electrophysiological recordings during conditioning 

procedures. One critical finding was reported by Aosaki, Graybiel, and Kimura 

(1994). This group recorded primate ventral striatal neurons during a classical 

conditioning design in which a neutral auditory stimulus was paired with a food 

reward. They found that initially only a small fraction of the neurons recorded 

responded to the auditory stimulus, but following repeated pairing with the reward 

the percentage of cells responsive to the CS increased substantially. 

Furthermore, unilateral dopamine depletion caused a dramatic reduction in 

responsiveness to the CS only on the side in which the dopamine depletion was 

performed. This observation had a large impact on the field because it 

demonstrated that neurons in regions that receive dopaminergic input change 

their activity coincident with learning, and this activity change depends on a 

functional dopamine system. 

 In parallel with these findings, electrophysiological recordings of putative 

midbrain dopamine neurons revealed a similar phenomenon. Midbrain dopamine 
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neurons are activated by rewards of various sensory modalities, and by reward-

predictive cues (Romo & Schultz, 1990; Schultz & Romo 1990; Ljunberg, 

Apicella, & Schultz, 1992). Importantly, expectation was determined to be a 

crucial factor in the responsiveness of these neurons to rewards. In non-human 

primates, dopamine neurons were found to be activated only by unexpected 

rewards, and, with conditioning, phasic increases in firing rate shifted from the 

reward to the CS (Mirenowicz & Schultz, 1994). Notably, when an expected 

reward was omitted, dopamine neurons ceased firing during the time of expected 

reward delivery. This indicated that dopamine neurons have a bidirectional 

response to the unexpected, as increases or decreases in firing rate were 

coincident with unexpected reward delivery or omission of an expected reward, 

respectively (Figure 1.3). Perhaps most provocative, with the strongest 

implications for learning theory, was the finding that when a reward becomes fully 

predictive, which is only seen with extensive training, responses to the reward 

disappear (Schultz, Apicella, & Ljungberg, 1993; Figure 1.3).  
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Figure 1.3. Reward-related activity of putative midbrain dopamine neurons is modulated 
by expectation. Top: Expected rewards, as well as expected reward omission, do not 
generate prediction errors and do not alter the firing rates of dopamine neurons. 
Bottom: A situation in which an expected reward is omitted generates a negative 
prediction error and causes a pause in dopaminergic cell firing. Conversely, a positive 
prediction error is generated when an unexpected reward is delivered, causing a 
transient increase in dopaminergic cell firing. Adapted from Waelti et al, 2001. 
 

 

 These observations were of particular significance to the field because 

they closely aligned with a prominent model of classical conditioning. The 

Rescorla – Wagner model of conditioning (1972) carefully described the factors 

that determined the effectiveness of a stimulus to cause learning. One of the 

most important factors in determining whether a CS could acquire association 

with a US is predictability, with unexpected reward delivery creating the strongest 

opportunity for learning. This factor was modeled as the difference between 

expectation and actual outcome and referred to as “delta”. Learning occurs best 



13 
 

when delta is largest. The observations by Schulz and colleagues indicated that 

the activity patterns of midbrain dopamine neurons may be the physiological 

substrate for computing these deviations in expectation, later termed “prediction 

errors” (Schultz et al, 1995; Schultz 1997), and thus may be the neural system 

responsible for conveying learning signals.  

 One important feature of the Rescorla-Wagner model was that it provided 

an explanation of complex learning phenomena, such as blocking. Blocking 

refers to the phenomenon by which associations made between a CS (B) and a 

US can be “blocked” if the CS is presented at the same time as a different, but 

qualitatively similar, CS (A) that has already been associated with the US. The 

Rescorla-Wagner model explains this occurrence in terms of expectation and 

predictability. CS B is blocked from association with the US because it does not 

offer any additional predictive value to the associative strength of the original CS 

A for the US (Rescorla & Wagner, 1972; Bakal, Johnson, & Rescorla, 1974). In a 

seminal study, Schultz and colleagues examined the activity of midbrain 

dopamine neurons in primates during a blocking design. During initial training, 

CS “A” was paired with a reward, and CS “B” was explicitly unpaired, such that 

CS B does not become associated with the reward. Following training a blocking 

procedure was conducted in which A was now combined with neutral stimulus 

“X” and presented as a compound CS (AX). Concurrently, neutral stimulus “Y” 

was combined with “B” and presented as a different compound CS.  Each 

compound CS was paired with reward delivery. Following this procedure, X and 

Y were presented alone and dopamine neuronal responses were recorded. 
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When presented following blocking, X did not evoke increased dopamine 

neuronal activity indicating that it was successfully blocked by A. However, Y did 

evoke increased dopamine neuronal activity as it was not blocked by the 

previously unpaired CS, B (Waelti, Dickinson, & Schultz, 2001). According to the 

Rescorla-Wagner model, stimulus X did not become an effective CS because 

when presented with stimulus A, it did not offer any additional predictive value to 

the already predictive CS, A. However, Y did become an effective CS when 

presented with B because B did not have any prior predictive value to it. This 

study demonstrated that dopamine neuronal activity reflects critical aspects of 

formal learning theory, and bolstered the view that the dopamine system conveys 

prediction error signals that guide reward learning.  

  The findings of Schultz and colleagues were further corroborated by 

studies using fast scan cyclic voltammetry to measure terminal dopamine 

release. Like midbrain dopamine neuronal activity, nucleus accumbens 

dopamine increases following reward receipt and in response to reward-

predictive stimuli (Phillips, Stuber, Heien, Wightman, & Carelli, 2003; Day, 

Roitman, Wightman, & Carelli, 2007; Roitman, Wheeler, Wightman, & Carelli, 

2008). Importantly, Day et al (2007) demonstrated that nucleus accumbens 

dopamine also is modulated by learning. Prior to conditioning, it was 

demonstrated that a food reward increased extracellular dopamine 

concentrations. With conditioning, dopamine began to increase in response to a 

visual cue that was paired with reward delivery, but not with a cue that was 

explicitly unpaired. Importantly, as dopamine increased to the CS with repeated 
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trials, the dopamine response to the reward itself began to decrease. This 

demonstrated that nucleus accumbens dopamine tracks learned associations in 

a manner that is reflective of the activity of midbrain dopamine neurons. This 

observation strengthened the work by Schultz and colleagues because it was 

previously only an assumption that ventral striatal dopamine was involved in 

learning on the basis of the examination of putative midbrain dopamine neurons.  

The application of fast scan cyclic voltammetry to scrutinize real time terminal 

dopamine signaling offered support to the hypothesis that ventral striatal 

dopamine signaling regulates appetitive association. 

 Although characterization of dopamine neuronal activity and terminal 

dopamine release supported the view that dopamine signals prediction errors 

that guide reward learning, a causal link between dopamine and learning was 

lacking. This was addressed in a recent study by Steinberg et al (2013) using 

optogenetics in transgenic rats to selectively and discretely manipulate dopamine 

neurons. The experimenters employed a blocking design in which they 

specifically activated VTA dopamine neurons during reward delivery. As a result 

of this stimulation, rats significantly increased responding to the visual stimulus 

that was blocked in a separate group of rats that did not receive effective 

optogenetic stimulation. According to the Rescorla-Wagner model described 

above, this visual stimulus is normally blocked because it does not offer any 

additional predictive value not conveyed to the animal by the original CS. 

However, by selectively activating dopamine neurons during the reward receipt, a 

prediction error signal was generated. Thus, the additional visual cue added 
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predictive value to the compound stimulus and consequently became associated 

with the reward. Furthermore, it was demonstrated that stimulating dopamine 

neurons during omission of expected reward delivery retarded extinction 

learning. In this case, the optogenetic activation of midbrain dopamine neurons 

prevented the negative prediction error normally caused by reward omission 

(Schultz, Apicella, & Ljungberg, 1993; Waelti et al, 2001) and thus attenuated 

learning that the reward was no longer available. These findings demonstrate 

that proper mesolimbic dopamine function is required for prediction error 

signaling that guides reward learning. Supported by the observation that 

prediction errors are reflected in human midbrain and ventral striatal BOLD 

signals (Diederen et al, 2016), this view of the role of dopamine in appetitive 

behaviors as a learning signal remains prominent to this day.  

 
 
Dopamine and Motivation 
  
 
 Reward is a complex process with clearly dissociable components. The 

sensation of pleasure during consumption and the motivational drive to obtain the 

reward, to which there is a learning component, are both important aspects of 

reward-seeking behavior. The findings that challenged the anhedonia hypothesis 

showed that manipulations that reduce dopamine signaling also altered the 

motivation to obtain a reward, but did not change the hedonic value of the reward 

itself (Berridge et al, 1989; Cousins & Salamone, 1994, Aberman & Salamone, 

1999; Cannon & Palmiter, 2003). These findings suggested that dopamine may, 

instead, play a role in reward learning (Beninger, 1983). Pharmacological studies 
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using dopamine antagonists during conditioning revealed that these 

manipulations did not prevent various stimuli from becoming associated with 

punishers, as rats tested in the drug-free state showed evidence of associative 

learning (Beninger, Mac Lennan, & Pinel, 1980; Beninger et al, 1980). 

Additionally, mice treated with dopamine antagonists exposed to a novel maze 

showed evidence of learning when re-exposed to the maze in a drug-free state 

(Ahlenius, Engel, & Zöller, 1977). Furthermore, rats treated with dopamine 

antagonists during the Pavlovian conditioning phase of a Pavlovian to 

instrumental transfer design still learned to discriminate between different 

conditioned stimuli (Beninger & Phillips, 1981). Together, these studies 

suggested that proper dopamine functioning was not required for various forms 

of associative learning, regardless of whether the association was to discrete 

aversive stimuli, contexts, or to rewards. The results of these studies indicate that 

the role of dopamine in appetitive association is more nuanced than simply 

strengthening associations. 

 Reward learning that guides reward-seeking behavior is not limited to the 

simple association between the cue and the consequence. As an environmental 

stimulus becomes associated with a reward, it begins to elicit behavioral 

responses that are reinforced by reward delivery. These responses, driven by 

conditioned stimuli through reward association, are stimulus-specific preparatory 

or approach behaviors (Bolles, 1972). The process by which cues associated 

with rewards gain incentive value, and elicit motivation, is referred to as incentive 

motivational learning (Beninger, 1983). In light of the findings discussed here that 
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manipulations that reduce dopamine also reduce responding for rewards (Wise & 

Schwartz, 1981; Wise, 1982) but do not prevent associative learning, Beninger 

(1983) argued that dopamine was specifically important for incentive motivational 

learning. In other words, dopamine signaling regulates the learning process by 

which reward-associated cues incentivize responding. This idea was supported 

by the observation that dopamine antagonists prevent incentive learning when 

administered during the conditioned reinforcement phases of a Pavlovian to 

instrumental transfer design (Beninger & Phillips, 1980). 

 Berridge & Robinson made a major theoretical advance to these ideas 

with the introduction of the “incentive salience” hypothesis of dopamine function 

(Robinson & Berridge, 1993; Berridge and Robinson, 1998). Originally postulated 

as a theory of the role of dopamine in drug addiction (Robinson & Berridge, 

1993), the incentive salience hypothesis became a more broad explanation of the 

role of dopamine in motivated behavior (Berridge & Robinson, 1998). At the crux 

of this hypothesis is the notion that reward can be dissociated into two distinct 

components: “liking” and “wanting”. Liking refers to the hedonic experience that 

accompanies reward consumption, while wanting refers to the motivational 

process “that instigates goal-directed behavior, attraction to an incentive 

stimulus, and consumption of the goal object” (Berridge and Robinson, 1998: p. 

313). They argue that while liking does not involve dopamine (Berridge et al, 

1989), wanting is a dopamine-mediated process. Specifically, dopamine 

signaling is not required for hedonic activation, nor is it required for associative 

learning. Rather, dopamine signaling is required to imbue a reward-predictive 
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cue with incentive value so that the cue itself becomes wanted and elicits goal-

directed behavior. Several studies of dopamine signaling offer support for the 

incentive salience hypothesis. DOPAC/dopamine ratios, an indication of 

dopamine utilization, are elevated in the nucleus accumbens in rats following 

presentation of a food-predictive cue (Blackburn & Phillips, 1989). This is also 

reflected in electrochemical monitoring of dopamine release in response to food-

predictive cues (Phillips et al, 1993; Roitman et al, 2004). These studies show 

that dopamine is elevated to cues that initiate preparatory behavior and 

incentivize responding, a critical facet of the incentive salience hypothesis. 

 An important implication of the incentive salience hypothesis is that 

hedonics, associative learning, and incentive motivation are dissociable 

psychological processes with distinct neural underpinnings. This was elegantly 

demonstrated by Smith, Berridge, and Aldridge (2011) using a Pavlovian design 

in which a distal cue preceded a proximal cue for intraoral sucrose delivery. They 

manipulated opioid and dopamine signaling within the nucleus accumbens and 

recorded neuronal activity in the ventral pallidum, an area with reciprocal 

connections to the accumbens that has also been implicated in hedonic and 

motivational processes (Smith et al, 2009). They found that an intra-accumbens 

mu-opioid receptor agonist increased ventral pallidum neuronal activity elicited by 

the incentive cue (proximal), as well as increased reward consumption, (wanting) 

and hedonic reactions to reward (liking). However, the effect of intra-accumbens 

amphetamine was specific for motivation, as it increased reward consumption but 

had no effect on hedonic reactions. Neither of these treatments altered neuronal 
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activity to the more distal cue, indicating that they did not change the associative 

strength of that cue with reward. These results indicated, as predicted, that the 

components of reward are governed by distinct neural signaling systems, and 

that the dopamine system is selectively important for incentive motivation. This 

report marked a demonstration of the core tenets of the incentive salience 

hypothesis.  

 Finally a recent high-profile study by Flagel and colleagues (2011) 

provided perhaps the strongest support for the role of dopamine in incentive 

salience. The study used fast scan cyclic voltammetry to scrutinize real-time 

dopamine signaling during an autoshaping design. This Pavlovian learning 

design involves training rats that lever extension is a cue for impending food 

delivery. The lever extends into the box for a period of time, and food is delivered 

to the goal area coincident with lever retraction. According to the incentive 

salience hypothesis, as the lever becomes associated with food delivery it is 

imbued with the mental representation of the food that incentivizes behavior.  

Thus, the lever itself elicits a strong conditioned response that involves direct 

engagement with the lever prior to food delivery. However, there are individual 

differences in this type of learning. Some rats showed a strong conditioned 

response toward the lever while others exhibited conditioned approach to the 

food delivery area. Measuring dopamine responses to the cue and the reward 

revealed striking differences between rats that reflected differential learning. In 

rats that learned the strong conditioned response of engaging the cue directly, 

the cue-evoked dopamine responses were substantially larger than those evoked 
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by reward. This cue-induced dopamine elevation was absent in rats that did not 

show the conditioned cue behavioral response. However, this group still 

approached the food delivery area in anticipation of reward delivery, indicating 

that the lever served as a predictive cue for food delivery. Furthermore, 

dopamine antagonist administration selectively disrupted conditioned responses 

toward the lever. These results support the hypothesis that that dopamine is not 

a critical regulator of basic associative learning, but tracks, and is required for, 

incentive motivational learning. Importantly, these findings are not at odds with a 

role for nucleus accumbens dopamine in prediction error signaling, as these 

signals should be important for learning the conditioned response of cue 

engagement.  

 Together, these studies strongly support the role of dopamine in 

incentivizing reward predictive cues to promote goal directed behavior. 

Demonstrations like these have helped strengthen the incentive salience 

hypothesis and have contributed to its continued influence on an evolving 

understanding of the role of dopamine in motivation.  

 
 
Dopamine and Effort 
  
 
 Another, perhaps parallel, explanation of the role of dopamine in goal 

directed behaviors is the hypothesis that dopamine regulates effort-based 

decision making. This view was inspired by numerous studies that demonstrated 

that while manipulations that decrease dopamine do not reduce the hedonic 

value of rewards (Berridge et al, 1989), they do reduce instrumental responding 



22 
 

to obtain rewards (Yokel & Wise, 1976; de Wit & Wise, 1977; Fouriezos & Wise, 

1978; Wise & Schwartz, 1981; Ettenberg & Camp, 1986). As described above, 

seminal work from John Salamone (Cousins & Salamone, 1994; Aberman & 

Salamone, 1999) showed that dopamine depletions do not impair responding for 

a food reward. Rather, these manipulations bias rats to choose rewards that 

require less effort to obtain, and decrease responding for rewards as more 

effortful responding is required. These studies provided a framework to view 

dopamine as playing a critical role in the computation of cost benefit analyses 

that guide reward seeking. Subsequent studies corroborated and further 

implicated dopamine signaling in this process by showing that blocking D1 or D2 

dopamine receptors biased rats to choose smaller, lower cost rewards over 

larger, higher cost rewards. Furthermore, administration of dopamine receptor 

agonists were shown to produce the opposite results, biasing behavior towards 

larger rewards despite increased effort required to obtain them (Bardgett et al, 

2009). Together, these findings support a behavioral economics view of the role 

of dopamine in goal directed behavior, and suggest that dopamine is important 

for the computation of cost benefit analyses that determine reward seeking.  

 Critical support for this idea comes from Cargnaird et al (2006) who 

examined the direct manipulation of dopamine on effort, independent of learning. 

Using a dopamine transport knockdown mouse, they examined responding for 

food on a progressive ratio and in the concurrent choice design utilized by 

Cousins and Salamone (1994). Knockdown of the dopamine transporter results 

in reduced dopamine clearance in terminal fields. Importantly, this manipulation 
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also increased tonic firing of midbrain dopamine neurons without affecting phasic 

burst firing. Mice lacking the dopamine transporter exhibited elevated breakpoints 

in a progressive ratio task. Furthermore, in the concurrent choice design they 

showed increased lever pressing for food pellets, despite free access to food 

presented concurrently. These experiments were performed following training in 

each task to control for the influence of elevated dopamine during learning. The 

results represent a significant advancement to field of behavioral 

neuroeconomics, as they provide a causal role for dopamine in effort-based 

decision making, and specifically in the sensitivity to the costs associated with 

effort. These findings comply with previous suggestions that dopamine signaling 

is related to response vigor and that elevated dopamine levels lead to increased 

effort to obtain rewards (Robbins & Everitt, 1992; Weiner & Joel, 2002). Indeed, 

this is also the case in humans; it has been demonstrated that pro-dopamingeric 

drugs reduce sensitivity to costs in effort-based tasks (Wardle et al, 2011).  

 Studies that use fast scan cyclic voltammetry to measure dopamine 

signaling directly have also shown that nucleus accumbens dopamine tracks 

cost. Using a delay discounting task, Saddoris and colleagues (2015) 

demonstrated that the dopaminergic response to a reward-predictive cue was 

largest with no delay between cue presentation and reward delivery. However, 

the introduction of a delay between cue and reward presentation decreased the 

dopaminergic response to the cue, and the length of the delay correlated with the 

attenuation of the cue response. Furthermore, when given free choice trials 

initiated by a cue, rats exhibited a strong preference for rewards with a 
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comparatively shorter delay, i.e. a smaller cost. This preference was abolished 

by optogenetic stimulation of VTA dopamine neuron terminals within the nucleus 

accumbens during the cue presentation. This result provides a causal role for 

nucleus accumbens dopamine in cost sensitivity, as preventing the cost-induced 

dopaminergic scaling of the cue response prevented delay-based costs from 

influencing response preference. This finding is provocative and supportive of the 

hypothesis that mesolimbic dopamine is computing cost benefit relationships that 

determine the allocation of effort.  

 The basic observation that states of reduced dopamine lead to reduced 

effort to obtain rewards is reflected in human clinical literature as well. Patients 

with Parkinson’s disease exhibit numerous locomotor deficits, including a 

reduction in the initiation of voluntary movement (Jankovic, 2008). While this 

particular deficit has been interpreted as a purely motoric perturbation, recent 

evidence indicates that it may also involve a motivational component. This 

reinterpretation arises from evidence that patients with Parkinson’s disease 

reduce their behavioral output as energetic demand is increased, despite 

demonstrating response capacity that is similar to healthy controls (Mazzoni, 

Hristova, & Krakauer, 2007). Thus, it may be the case that some of the motor 

dysfunction reflects a perturbation in cost benefit analysis such that perceived 

cost of movement is inflated. In other words, these patients perceive rewards that 

would typically engender responding as not being worth the effort. To examine 

this, Chong et al (2015) developed a task that not only incorporated effort in 

responding for a reward, but also gave subjects the choice of whether or not to 
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initiate a bout of responding. With the amount of effort necessary to obtain a 

reward in a given trial known ahead of time, subjects could chose if responding 

was worth it. This allowed for the calculation of “effort indifference points” where 

subjects chose to respond on 50% of trials. Chong and colleagues found that 

patients with Parkinson’s disease had a heightened sensitivity to effort 

requirements (costs) for small rewards, as they chose to respond on a smaller 

proportion of trials compared to healthy controls. This gap closed as the reward 

magnitude increased. In these patients, treatment with D2-like receptor agonists, 

or pro-dopaminergic drugs, increased willingness to work for smaller rewards. 

The importance of this finding is the demonstration that some of the motor 

deficits associated with Parkinson’s disease are due to perturbations in 

motivation, in addition to neurodegenerative disruptions in motor function. 

Furthermore, it highlights the utility of this disease for the study of the role 

dopamine in goal directed behavior, as it extends the preclinical literature to the 

clinical setting to suggest that dopamine is involved in cost benefit analysis to 

determine motivation to seek rewards.  

 
 
Attempts to Unify Theories of the Role of Dopamine in Motivation, 
Learning, and Neuro Economics   
  
 
 The possibility that tonic and phasic dopamine signaling may have distinct 

functions in goal-directed behavior became the foundation of attempts to unify 

the seemingly disparate views of dopamine function. Niv et al (2007) proposed a 

model of dopamine signaling that unites theories of the role of dopamine in 
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learning (Schultz, 1997), incentive salience (Berridge & Robinson, 1998), and 

effort-based decision making (Cousins & Salamone, 1994). Rather than focus on 

performance in discrete trials, their model focuses on situations in which reward 

is continuously available. This allows for examination of not just the choice to 

respond, but also latency to respond and response vigor. This model states that 

reward rate, the amount of available reward over unit time, determines optimal 

response strategies. In situations in which reward rate is high, the optimal latency 

to respond is low, and the vigor with which to maintain responding is high. The 

converse is also true. A lower reward rate results in a higher latency to respond 

and decreases response vigor. In other words, states of high reward rate 

increase the cost of inaction and compel effortful responding. Niv and colleagues 

suggest that reward rate is a state variable, i.e. that it is relatively stable, and this 

could be signaled by slow neurochemical changes, a role they ascribe to tonic 

dopamine. 

 One of the strengths of the model is that is makes testable predictions, 

among them being that food deprived animals should have elevated tonic 

nucleus accumbens dopamine when presented with food, as reward rate is 

higher in a deprived animal. This is corroborated by microdialysis work showing 

that, indeed, food deprived animals do have an exaggerated dopamine response 

to food consumption (Wilson et al, 1995). Food deprived rats also have a 

reduction in dopamine transporter expression and function (Patterson et al, 

1998), which elevates tonic dopamine (Cargnaird et al, 2006), and these animals 

exhibit increased dopamine D2 receptor expression which may decrease 
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sensitivity to the cost of effortful responding (Thanos et al, 2008). The separation 

of roles for dopamine based on time scale allows for rapid changes in dopamine 

to convey learning signals and/or control the attribution of incentive salience to 

reward predictive cues. Overall, the strength of this model is the ability to 

synthesize seemingly disparate observations and present a testable framework 

for researchers going forward. 

 In a recent high impact study, Hamid et al (2015) furthered the ideas put 

forward by Niv and colleagues (2007) by using microdialysis and fast scan cyclic 

voltammetry to examine dopamine signaling on multiple time scales in the same 

task. In the task, a cue signaled the opportunity to choose one of two response 

options, and each option resulted in a differential probabilistic reward. In 

situations in which the reward rate was high, rats exhibited shorter response 

latencies and received more rewards per minute than when the reward rate was 

low. Furthermore, using microdialysis to measure slow changes in dopamine 

signaling, they demonstrated that dopamine concentration was strongly 

correlated to reward rate. Thus, as predicted by Niv and colleagues, motivational 

state is positively correlated with reward rate, and this is reflected in slow 

changes in dopamine.  

 To examine the role of rapid changes in dopamine in goal-directed 

behavior they used fast scan cyclic voltammetry to record subsecond dopamine 

fluctuations during the probabilistic reward task. They found that unexpected 

rewards evoked larger increases in dopamine than did expected rewards, 

consistent with prediction error theory (Schultz, 1997). However, reward omission 
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did not produce a discrete reduction in dopamine, as would be expected if 

dopamine was conveying a prediction error signal. Rather, reward omission 

produced more drawn out adjustments to dopamine that the authors suggested 

reflects changes in reward rate. To clarify this discrepancy, trial-by-trial changes 

in baseline and peak dopamine concentration following expected and 

unexpected rewards were analyzed. Prediction error theory would suggest that 

peak cue-evoked dopamine should decrease across trials as the reward 

becomes increasingly expected. However, it was observed that as rewards 

increased in frequency, cue-evoked dopamine remained constant and baseline 

dopamine concentration was elevated. This pattern of dopamine signaling is, 

again, more consistent with the interpretation that dopamine is conveying 

information about state value (reward rate). These findings suggest that 

dopamine signals reward availability on multiple time scales. This theory 

reconciles different theories positing a role for dopamine in motivation and 

learning by characterizing signals that simultaneously convey information about 

both. Dopamine levels represent a constantly updating signal about the value of 

a given situation, and this influences the willingness to work to obtain reward. 

Simultaneously, rapid changes in dopamine are used as learning signals. 

However, these learning signals are not changes from a steady baseline, as 

learning theory suggests. Rather, they are fluctuations from a rapidly changing 

baseline that signals state value.  

 This latest theory is satisfying because it provides for a role for dopamine 

in motivated behavior that makes sense considering the anatomical position of 
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the nucleus accumbens. Given that the nucleus accumbens has the capacity to 

influence motor output, the notion that rapid dopamine fluctuations purely signal 

the difference between expectations and outcomes may be too limited. A role for 

dopamine that facilitates appetitive association, layered on top of a simultaneous 

signal that conveys the inherent value of the situation allows for dopamine to 

modulate both learning and motivation to determine effortful responding. This 

study marks the most recent attempt to unify the existing views of the role of 

dopamine in goal-directed behavior. Further research will be required to 

determine the potential generalizability of this model to other experimental 

situations. 

 
 
Dopamine Neurons and Aversion 
  
 
 Despite the extensive literature on the characterization of the involvement 

of nucleus accumbens dopamine in reward related behaviors, the role of this 

neurotransmitter system in aversion and avoidance behaviors has been the 

subject of comparatively little examination. Although early reports indicated that 

midbrain dopamine neurons exhibit a uniform response to rewarding stimuli 

(Schultz, 1997), subsequent electrophysiological examinations of the changes in 

firing rates of midbrain dopamine neurons during rewarding and aversive 

experiences have revealed a more heterogeneous response. As discussed 

previously, omission of an expected reward inhibits midbrain dopamine neurons 

(Schultz, 1997; Waelti et al, 2001). Consistent with this, foot pinch also has been 

shown to inhibit the majority of midbrain dopamine neurons (Maeda & Mogenson, 
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1982). This was later suggested to be a uniform response (Ungless, Magill, & 

Bolam, 2004), although more recent evidence suggests a more heterogeneous 

response profile (Brischoux et al, 2009; Zweifel et al, 2011). An air puff to the 

face produces inhibitions in four times more dopamine neurons than excitations 

in monkeys (Matsumoto & Hikosaka, 2009), however this ratio drops to two to 

one in mice (Cohen, Haesler, Vong, Lowell, & Uchida, 2012). Electric foot shock 

produces a heterogeneous response that is separable by VTA sub region 

(Brischoux et al, 2009). To the extent that foot shock evokes an inhibitory 

response, it appears to do so by exciting midbrain GABAergic neurons that 

typically act to inhibit dopamine neurons locally (Tan et al, 2012). Despite the 

lack of a uniform response, it is clear that aversive stimuli of various sensory 

modalities have some degree of inhibitory effect on midbrain dopamine neurons.  

 As is the case for reward-associated cues, aversion-associated cues are 

also encoded by midbrain dopamine neurons, and again, the response is not 

uniform. Cues for an aversive air puff to the hand have been shown to produce 

predominantly inhibitory responses in putative dopamine neurons in the monkey 

(Mirenowicz and Schultz, 1996), while cues for an air puff to the face have also 

been reported to produce predominantly excitations (Joshua, Adler, Mitelman, 

Vaadia, & Bergman, 2008). However, this later example focused primarily on 

substantia nigra neurons, and more recent reports have shown a cue for an 

aversive air puff produces a mix of excitations and inhibitions in the VTA 

(Matsumoto & Hikosaka, 2009).  Additionally, a shock-predictive cue elicits a 
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largely inhibitory response by VTA dopamine neurons (Mileykovskiy & Morales, 

2011).  

 It is important to point out that these results may be complicated for a 

number of reasons. These studies test a variety of aversive stimuli of various 

intensities and sensory modalities. This may partially explain why differential 

effects are often observed. Furthermore the state of the animal may explain 

discrepant results, as some experimental approaches require recordings in 

anesthetized animals. The presence of anesthesia has been reported to alter 

dopamine neuron activity (Koulchitsky, De Backer, Quertemont, Charlier, & 

Seutin, 2012), and furthermore, the magnitude of this effect may be dependent 

on the specific anesthetic used. Finally, midbrain dopamine neurons project to 

multiple forebrain regions and responses of these neurons to aversive stimuli 

may different by projection targets (Ikemoto, 2007; Lammel, Ion, Roeper, & 

Malenka, 2011). Thus, in order to assess the extent to which aversive stimuli 

impact the mesolimbic dopamine system it is necessary to measure dopamine 

release directly in terminal fields. 

 
 
Nucleus Accumbens Dopamine and Aversion 
  
 
 Microdialysis is a frequently utilized technique to assess how aversive 

stimuli modulate nucleus accumbens dopamine concentrations. The majority of 

these examinations have concluded that a variety of aversive events including 

foot shock, tail pinch, tail shock,  restraint stress, and social defeat all increase 

dopamine (Abercrombie et al, 1989; Sorg & Kalivas, 1991; Young, Joseph, & 
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Gray, 1993; Finlay, Zigmond, & Abercrombie, 1995; Kalivas & Duffy, 1995; Tidey 

& Miczek, 1996; Doherty & Gratton, 1997; Di Chiara, Loddo, & Tanda, 1999; 

Young, 2004). In addition, several studies have found that cues that predict 

aversive stimuli also increase dopamine (Young, Joseph, & Gray, 1993; Young, 

2004). In a few instances these aversion-induced increases in dopamine do not 

persist beyond the initial presentation of the aversive stimulus, which has been 

interpreted as a habituation of the dopaminergic response (Di Chiara, Loddo, & 

Tanda; Young 2004). However, there are a few notable exceptions. The 

dopaminergic response to restraint stress has been shown to be biphasic; 

dopamine increases at the onset of restraint, but decreases below baseline after 

some time (Puglisi-Allegra et al, 1991). Saccharin normally evokes a dopamine 

increase, but its presentation results in a decrease when it acquires aversive 

properties in a conditioned taste aversion design (Mark, Blander, & Hoebel, 

1991). There are other examples in which aversive states such as chronic stress, 

cocaine withdrawal, or food deprivation cause a reduction in basal dopamine 

concentrations (Weiss et al, 1992; Pothos, Creese, & Hoebel, 1995; Gambarana 

et al, 1999), although these examples are difficult to interpret due to the potential 

for long term neuroadaptations that may contribute to this response (Koob & Le 

Moal, 2000). The discrepancies in these findings, and the lack of coherence with 

the electrophysiological results, can be explained by methodological differences, 

as well as differences in the temporal resolution of the assessment techniques. 

Limitations in temporal resolution may prevent microdialysis from capturing the 

immediate response to a discrete aversive stimulus, given that the alleviation of 
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said stimulus is likely rewarding (McCutcheon et al, 2012). Thus, in order to 

properly characterize the effect of aversive stimuli on dopamine transmission, 

temporal resolution sufficient to detect sub second changes in dopamine 

concentration is required.  

 Few studies have used fast scan cyclic voltammetry to examine the 

effects of aversive stimuli on dopamine transmission. However this technique has 

a temporal resolution comparable to in vivo electrophysiology which, as 

mentioned previously, has provided considerable information about dopamine 

dynamics. Of these, some have focused on dopamine responses to cues that 

predict the delivery of an aversive stimulus. These studies have reported 

decreases in dopamine concentration time locked to cue presentation in the 

nucleus accumbens core (Badrinarayan et al, 2012; Oleson et al, 2012). In 

regards to primary aversive stimuli, increases in nucleus accumbens dopamine 

signaling have been reported in response to tail pinch and social defeat stress 

(Anstrom, Mizcek, & Budygin, 2009; Budygin et al, 2012). As mentioned 

previously, these stimuli can vary in intensity, the sensory pathways by which 

they are transduced, and the extent to which they are temporally discrete. Thus, 

in making these assessments, it is critical to compare responses to rewarding 

and aversive stimuli that are consist in timing, intensity, and modality. Studies 

that measure the dopamine responses to intraoral delivery of rewarding and 

aversive tastants, have found that sucrose, a rewarding tastant, increases 

dopamine while quinine, an aversive tastant, causes a reduction (Roitman et al, 

2008; Wheeler et al, 2011; Figure 1.4).  
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 Aside from the benefit of being transduced by the same sensory system, 

the taste system, the use of these rewarding and aversive stimuli also offers the 

benefit of direct behavioral assessment of hedonic reactions with taste reactivity 

(Grill & Norgren, 1978; Berridge et al, 1989). Interestingly, these responses can 

be altered with conditioning. Tastes that typically increase dopamine 

concentration (e.g. sucrose or saccharin) come to elicit a negative affective state 

and decrease dopamine when paired with lithium chloride or cocaine 

Figure 1.4. Nucleus accumbens dopamine fluctuations in response to 
rewarding and aversive tastants. Single trial in vivo voltammetric 
recordings in awake and behaving rats receiving an intra-oral infusion of 
saccharin or quinine. Top: Current changes are shown in color at various 
potentials (y-axis) across time (x-axis). Taste infusion is indicated by the 
red bar. Bottom: Change in dopamine concentration across time. Taste 
infusion is indicated by the red bar. Saccharin infusion elicits a transient 
increase in dopamine and appetitive taste reactivity while quinine infusion 
elicits a pause in naturally occurring dopamine release and aversive taste 
reactivity.   
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(McCutcheon et al, 2012; Wheeler et al, 2008; Wheeler et al, 2011). Thus 

primary or conditioned aversive stimuli cause rapid and pronounced decreases in 

nucleus accumbens dopamine neurotransmission. The careful characterization of 

aversion-induced reductions in dopamine is important because these signals 

have been suggested to play a role in aversive learning and avoidance behavior 

(Frank, Seeberger, & O’Reilly, 2004; Tan et al, 2012; Danjo, Yoshimi, Funabiki, 

Yawata, & Nakanishi, 2014). Understanding how aversive stimuli impinge on 

mesolimbic dopamine signaling may prove invaluable to understanding how 

these fundamental processes are regulated, and how they may become aberrant 

in disorders of dysregulated motivation and aversion learning such as drug 

addiction and Parkinson’s disease.   

 
 
Dopamine and Drug Addiction – Theories of Positive Reinforcement  
  
 
 Drug addiction is a chronic disorder characterized by persistent bouts of 

relapse following periods of abstinence from drug use. The National Institute of 

Drug Abuse estimates the economic cost of illicit drug use in the US to be $193 

billion annually, and this does not include the dramatic economic burden related 

to alcohol and tobacco use (NIDA Trends & Statistics, 2016). Preclinical animal 

models of addiction have been established to study this disorder and aid in the 

development of potential treatments, with one of the most useful being the self-

administration design, followed by extinction and reinstatement. Briefly, in this 

paradigm an animal is trained to make an operant response (most commonly a 

lever press) for an intravenous infusion of a drug. Following several sessions 
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across days in which subjects are given the opportunity to self-administer drug, 

the drug is replaced by saline and operant responding is extinguished. Once 

sufficient extinction is observed, experimenter delivered stimuli, either a priming 

injection of the previously self-administered drug, drug-associated cues, or 

aversive stimuli are presented to evoke increased lever pressing, or drug-

seeking. This final phase is known as reinstatement and is a model of relapse 

(Panlilio & Goldberg, 2007).  

 Many studies of drug addiction have focused on motivational circuitry, as 

foundational work has shown that many drugs of abuse act on dopamine 

neurotransmission (Wise, 1982; Bozarth & Wise, 1987) For this reason, 

influential theories for drug addiction have roots in the theories of dopamine 

function previously discussed here (Wise, 1982; Berridge & Robinson, 1998). 

One of the early theoretical explanations involving dopamine that gained 

widespread appeal was the “psychomotor stimulant” theory of addiction (Bozarth 

& Wise, 1987). Central to this view was the suggestion that drugs of abuse, 

across classes, produce their reinforcing effects and locomotor responses by 

activating the mesolimbic dopamine system. Activation of this common pathway 

was suggested to be critical for the development and maintenance of addictive 

behavior. Although tolerance develops following repeated drug use in some 

situations, this was considered a secondary process and not required for 

addiction to occur. While influential, this theory has key limitations. It focuses 

principally on the development of compulsive drug use, and offers little to explain 

the phenomenon of relapse, perhaps the most insidious aspect of this disease. It 
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identifies that dopamine is important for the reinforcing efficacy of drugs of 

abuse, but precisely how it mediates that process is unclear.  

 Subsequent theories emerged that were more comprehensive and offered 

a clear role for dopamine in the development of addiction. Perhaps the most 

currently influential is the “incentive sensitization” theory (Robinson & Berridge, 

1993), which was later formally extended to the “incentive salience” hypothesis of 

dopamine function discussed previously (Berridge & Robinson, 1998; see 

Dopamine and Motivation). This theory posits that the activation of the 

mesolimbic dopamine system by drugs of abuse results in augmented incentive 

motivational learning involving drug-associated cues. Repeated drug use 

produces long lasting neuroadaptations that cement this learning and cause 

these drug associated cues to remain powerful motivators of behavior in the 

absence of persistent drug use. In order words, the dopamine response evoked 

by addictive drugs “sensitizes” the normal attribution of incentive salience to 

reward associated cues to supra-threshold levels causing these cues to exert 

unnatural motivational drive over future behavior. This process occurs 

independently of the hedonic impact of drug consumption, meaning that 

eventually the drug does not need to be liked to be pursued. This distinction 

between liking and wanting drugs of abuse provides an explanation for the 

phenomenon that human drug addicts experience decreased euphoria from drug 

taking, and exhibit blunted dopaminergic responses to stimulants despite 

reporting drug craving (Martinez et al, 2007; Volkow et al, 2014; Volkow, Koob, & 

McLellan, 2016). It also provides an explanation for relapse behavior by 
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suggesting that sensitized drug cues maintain their motivational strength even 

following prolonged periods of abstinence. The tenets of this theory helped guide 

an expansive literature on drug-induced neuroadaptations that occur in the 

mesolimbic dopamine system, many of which facilitate augmented drive of this 

circuitry (Nestler, 2001; Wolf, 2016). However, this theory is not comprehensive. 

A consistent observation in both rodent models and clinical observations of 

human addiction is that aversive stimuli or stressful events cause relapse (Sinha 

et al, 2003; Paliwal, Hyman, & Sinha, 2008). This phenomenon cannot be readily 

explained by incentive sensitization theory.  

 
 
Dopamine and Drug Addiction – Theories of Negative Reinforcement 
  
 
 An early explanation of how the experience of aversion contributes to drug 

addiction was put forth by Soloman and Corbit (1974). Termed the, “opponent 

process” model, this view focuses on homeostatic processes that are engaged 

by rewarding or aversive events. Solomon and Corbit argue that stimuli that 

evoke sensations of pleasure and positive affective/emotional states are 

automatically countered by an opposing response, referred to as the “opponent”, 

or “B” process. The emergence of the opponent process is a homeostatic 

response to the engagement of the immediate effect of the stimulus, or “A” 

process, and these opposing forces govern general motivated behavior. This 

view of motivation is expanded to drug addiction through the suggestion that 

drugs of abuse engage these normal processes. Soloman and Corbit propose 

that the addicted state is a result of a drug-induced dysregulation of these 
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homeostatic motivational processes. With persistent drug use, the euphoria 

caused by drug consumption that characterizes the A process dissipates, while 

the subsequent B process is exaggerated and takes longer to return to baseline. 

This pronounced B process evokes a negative affective state, a craving state, 

and the motivation to alleviate this negative state becomes a progressively 

stronger behavioral regulator. It is suggested that the augmentation of the B 

process is long lasting, and possibly permanent. Thus, the opponent process 

model provides a framework for how negative affective states engage negative 

reinforcement mechanisms to guide motivated drug-seeking behavior (Soloman, 

1980). 

 Theoretical extension and potential neurobiological underpinnings of the 

opponent process model as an explanation of drug addiction have been put forth 

in numerous publications by Koob & Le Moal (Koob, 1996; Koob & Le Moal, 

2001). Koob has posited that repeated drug use produces a homeostatic 

dysregulation so severe that the system is unable to return to baseline and thus 

establishes a new “hedonic set point” outside of the normal range (Figure 1.5). 

This allostatic process results in the emergence of a negative affective craving 

state that persists even in the absence of drug taking and is a powerful motivator 

of relapse. Furthermore, these dysfunctional changes in affective state are 

associated with a set of neurobiological adaptions that result from repeated drug 

taking. 
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These include increased activity of brain stress and emotional systems that have 

been conceptually described as the “antireward system” (Koob & Le Moal, 2005; 

Koob & Le Moal, 2008). Together, these ideas form a model of addiction that is 

characterized by a persistent, anhedonic negative affective state, driven in part 

by the activation of the antireward system, which serves as a powerful motivator 

of recurrent drug use through negative reinforcement. 

 Numerous observations in preclinical studies have provided support for 

various aspects of this model. There is considerable evidence that animals in 

acute drug withdrawal have a reduced sensitivity to reward, demonstrating that 

Figure 1.5. Dysregulation of affective state in drug addiction – an extension of the 
opponent process model. With repeated drug exposure the euphoric aspect of drug 
experience (the A process) is blunted while the negative affective component (the B 
process) of drug use is enhanced. Importantly, repeated drug use results in 
dysregulation of this homeostatic balance such that the baseline resets below the 
homeostatic point. This allostatic state is characterized by persistent negative affect 
and drug craving. Adapted from Koob & Le Moal, 2000.  
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the withdrawal state is characterized by the emergence of negative affect and 

anhedonia (Markou & Koob, 1991; Schulteis, Markou, Gold, Stinus, & Koob, 

1994; Schulteis, Markou, Cole, & Koob, 1995; Epping-Jordan, Watkins, Koob, & 

Markou, 1998; Kenny, Chen, Kitamura, Markou, & Koob, 2006). A multitude of 

neuroadaptations have been characterized in drug withdrawal including changes 

in the activity of endogenous opioid systems and corticotropin-releasing factor 

signaling (Koob & Le Moal, 2000; Koob & Le Moal, 2005). This negative 

emotional state is also associated with decreases in nucleus accumbens 

dopamine signaling (Weiss, Markou, Lorang, & Koob, 1992; Weiss, 1996). The 

possibility that decreased nucleus accumbens dopamine signaling may be 

associated with a heightened motivational state is intriguing, as it is not predicted 

by traditional theories of dopamine and goal-directed behavior. However, this 

idea and the general notion that withdrawal is a significant driver of drug seeking 

has been challenged. Naloxone precipitated withdrawal is associated with 

decreased striatal dopamine, but this treatment failed to promote reinstatement 

of heroin seeking. In addition, spontaneous withdrawal states have been found to 

reinstate heroin seeking, but were not found to be associated with reductions in 

dopamine (Shaham, Rajabi, & Stewart, 1996). Finally, relapse in human addicts 

remains likely months or even years after the acute effects of withdrawal have 

dissipated. Still, it remains possible, due to the persistent affective dysfunction 

characterized by Koob and Le Moal, that drug addicts may have heightened 

sensitivity to aversive events. These events may cause drug seeking through 

negative reinforcement by loading on the persistently exaggerated B process.  
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Aversive Experience and Drug Addiction in Humans 

  
 
 Aversive life events are a significant cause of relapse in human drug 

addicts. Addicts report that aversive stimuli elicit powerful states of drug craving 

and precipitate relapse (Wallace et al, 1989), and these reports are consistent 

with data from the clinical setting demonstrating that drug associated stimuli 

induce a negative affective state, engage the stress response, and cause 

cocaine craving in abstinent users (Sinha, Catapano, & O’Malley, 1999; Sinha et 

al, 2003). Furthermore, the degree of craving predicts the latency to relapse 

(Paliwal et al, 2008). The relationship between negative emotional states and 

drug use is further highlighted by the observation that the incidence of PTSD and 

other mood disorders is higher among cocaine addicts (Cottler et al, 1992), and 

traumatic episodes, as well as imagery based on previously experienced 

traumatic events cause drug craving (Brady et al, 1998; Coffey et al, 2002). 

Specific alterations in the dopamine system have been observed in addicts that 

appear to be consistent with enhanced sensitivity to aversive stimuli. Alcoholics 

and cocaine addicts both exhibit a reduction in striatal D2 receptors, and this 

reduction persists months after cessation of drug use (Volkow & Fowler, 2000). 

Increases in dopamine transporter function have also been described in the 

striatum in individuals with cocaine experience (Staley, Hearn, Ruttenber, Wetli, 

& Mash, 1994; Malison et al, 1998; Little et al, 1999), a finding that complies with 

a similar report in monkeys (Letchworth, Nader, Smith, Friedman, & Porrino, 
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2001). These changes are indicative of a reduction in striatal dopamine, and may 

be involved in the dysregulation of motivated behavior.   

 As progress continues towards a more complete understanding of the 

causes of drug relapse, the links between negative mood, craving, and drug use 

and their contribution to relapse will likely be a focal point of treatment strategies. 

Specifically, given the frequency and unavoidable nature of aversive life events, 

the effect of aversive stimuli on affective state is of particular concern, making 

affective regulation an important target of therapeutic interventions aimed at 

relapse prevention. This highlights the need to better define the neurobiological 

basis of how aversive events, and the subsequent negative affective state they 

evoke, engage the brain’s motivational circuitry to cause relapse. 

 
 
Aversive Experience and Reinstatement in Rodents  
  
 
 The self-administration/reinstatement model has been utilized extensively 

to study the neurobiological regulation of relapse in preclinical animal models. 

Various aversive events reinstate extinguished drug seeking in rats, including 

forced swim (Conrad et al, 2010) and food restriction (Shalev et al, 2003). 

However, much of what is known about the neural regulation of aversion-induced 

drug seeking comes from studies using intermittent electric foot shock (Ahmed & 

Koob, 1997). Despite differences in stimulus properties, and the discrepancies in 

the dopaminergic responses they evoke, all of these aversive events engender 

motivated behavior, and induce a negative affective state in the animal.  
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 Signaling mechanisms involved in the stress response have been shown 

to be involved in reinstatement of drug seeking caused by electric foot shock. 

Central administration of corticotropin-releasing factor (CRF), a peptide 

classically studied for its function in the HPA axis, causes reinstatement 

(Mantsch et al, 2008), and systemic delivery of a CRF receptor antagonist blocks 

reinstatement (Shaham et al, 1997; Graf et al, 2011). The ability of CRF to 

reinstate extinguished cocaine seeking is not dependent on HPA axis function, 

as adrenalectomy does not alter this effect (Graf et al, 2011). The involvement of 

CRF in reinstatement has been localized to the VTA. Electric foot shock 

increases VTA CRF concentrations (Wang et al, 2005), and blocking VTA CRF 

receptors also blocks foot shock-induced reinstatement (Blacktop et al, 2011). 

The observation that shock-induced reinstatement requires activation of VTA 

CRF receptors indicates a possible interaction with mesolimbic dopamine 

signaling. Indeed, it has been demonstrated that CRF application inhibits VTA 

dopamine neurons by activating G-protein coupled inward-rectifying potassium 

channels (Beckstead et al, 2009). CRF administration has also been shown to 

decrease nucleus accumbens reward-evoked dopamine release as measured by 

fast scan cyclic voltammetry (Wanat, Bonci, & Phillips, 2013). These 

observations are difficult to reconcile with reports that electric foot shock 

increases nucleus accumbens dopamine measured by microdialysis (Sorg & 

Kalivas, 1991). Furthermore, reductions in nucleus accumbens dopamine are not 

typically associated with the performance of a goal-directed behavior such as 

drug seeking.  The apparent contradiction in the dopamine response to foot 
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shock and the inhibitory actions of CRF on nucleus accumbens dopamine 

release may be partially explained by the complexity of foot shock as an aversive 

stimulus and the possible technical limitations of microdialysis to capture this 

response.  

 These discrepancies highlight the importance of determining both the 

physiological response of dopamine signaling in response to an aversive 

stimulus and the strength of that stimulus to cause reinstatement.  

As measured by fast scan cyclic voltammetry, intraoral quinine, a primary 

aversive tastant, evokes a negative affective state and decreases nucleus 

accumbens dopamine concentrations (Roitman et al, 2008; Wheeler et al, 2011). 

A recent report from our lab examined the capacity of this aversive stimulus to 

cause reinstatement of extinguished cocaine seeking (Twining et al, 2014). In 

this study we observed that quinine delivery did reinstate cocaine seeking, and 

that this effect required VTA CRF receptor activation. Additionally, we showed 

that quinine decreased nucleus accumbens dopamine on two time scales, and 

that blockade of VTA CRF receptors prevented the tonic dopamine reduction but 

did not alter the phasic dopamine response (Figure 1.6).  

 The finding that an aversive stimulus that decreases nucleus accumbens 

dopamine causes drug seeking is provocative. Early theories of addiction 

suggested that negative reinforcement could guide drug seeking (Soloman & 

Corbit, 1974), however little experimental evidence has supported this idea. 
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Figure 1.6. Intra-VTA CRF receptor blockade prevents aversion-induced reductions in 
dopamine. Dopamine signaling is shown in color within (x axis) and across (y-axis) 
trials. Top: Baseline collection period showing naturally occurring dopamine signaling.  
Middle: Dopamine signaling across trials of repeated quinine delivery. Importantly, 
quinine decreases dopamine acutely, coincident with experience of the taste, but also 
decreases dopamine broadly across trials (y-axis). Bottom: Intra-VTA administration of 
the CRF receptor antagonist, CP-376395, prevents the broad, or “tonic”, decrease in 
dopamine while leaving the acute, or “phasic” decrease intact. Adapted from Twining 
et al, 2014.  
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A potential interpretation of our data is that the aversion-induced reduction in 

dopamine evokes a negative affective state, and motivates drug seeking 

behavior in an effort to alleviate this state. While seemingly at odds with evidence 

that other aversive stimuli increase dopamine to cause drug seeking, these 

observations can be reconciled when considering a model of striatal signaling 

(Figure 1.7).  

 

  

 

Stimuli that increase dopamine and cause reinstatement may activate low affinity 

D1 receptors to increase the sensitivity of D1-expressing MSNs to glutamatergic 

Figure 1.7. Model of dopaminergic modulation of striatal circuitry and drug-
seeking. Rewarding stimuli and their predictors activate VTA dopamine neurons, 
causing an increase in nucleus accumbens dopamine concentration. This 
promotes excitability of D1-expressing medium spiny neurons that have been 
implicated in drug-primed and cue-induced reinstatement of drug seeking. 
Conversely, aversive stimuli activate CRF receptors in the VTA to inhibit the 
activity of dopamine neurons, causing a reduction in dopamine tone in the 
nucleus accumbens and the induction of a negative affective state. This 
promotes the excitability of D2-expressing medium spiny neurons to drive drug-
seeking via negative reinforcement.  
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drive to promote behavior. In contrast, stimuli that decrease dopamine may 

reduce occupancy of high affinity D2 receptors, increasing the sensitivity of D2-

expressing neurons to glutamatergic drive to promote avoidance. Indeed, 

optogenetic inhibition of dopamine neurons has recently been shown to be 

aversive (Danjo et al, 2014), and activation of D2-expressing MSNs has been 

implicated in avoidance behavior (Kravitz, Tye, & Kreitzer, 2012; Hikida et al, 

2013; Francis et al, 2015).  

 One potential caveat with this interpretation is that reinstatement caused 

by electric foot shock is not thought to involve nucleus accumbens dopamine, as 

blockade of D1 or D2 receptors in this area does not prevent reinstatement 

(Shaham & Stewart, 1996). However, it has been shown that local delivery of a 

D3 receptor antagonist does block stress-induced reinstatement of cocaine 

seeking (Xi et al, 2004). There is ample evidence for a role of prefrontal cortical 

dopamine in stress-induced reinstatement (Capriles, Rodaros, Sorge, & Stewart, 

2003; McFarland, Davidge, Lapish, & Kalivas, 2004; Mantsch, Baker, Funk, Lê, & 

Shaham, 2015), and it is possible that aversion-induced reductions in nucleus 

accumbens dopamine are not critical for reinstatement caused by aversive 

stimuli. Alternatively, it is possible that quinine is qualitatively different than foot 

shock, and can engender motivated behavior via distinct neural circuitry. Further 

experiments are necessary to determine the involvement of aversion-induced 

reductions in nucleus accumbens dopamine to stress-induced reinstatement. 
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Conditioned Cues and Relapse 
  
 
 In preclinical models, the presentation of drug-associated cues has been 

shown to be sufficient to reinstate extinguished drug seeking for a variety of 

different drugs (Di Chiara et al, 1999; Crombag, Bossert, Koya, & Shaham, 

2008). These cues associated with immediate drug delivery increase nucleus 

accumbens dopamine signaling (Phillips et al, 2003) and activate nucleus 

accumbens neurons (Hollander & Carelli, 2007). It is commonly thought that 

environmental stimuli become incentivized through association with the drug, and 

the ability of a stimulus to evoke the neural representation of the drug is the 

reason these cues elicit drug seeking (Robsinson & Berridge, 1993). 

 However, under certain conditions drug-associated cues may not elicit a 

mimetic physiological response. An extension of the opponent process model 

(Solomon and Corbit, 1974) is that a drug-associated cue may be able to evoke a 

response opposing the response evoked by the drug itself, known as the B-

process. There is ample evidence to suggest that some drug-associated cues do 

evoke such a conditioned compensatory response. When rodents are presented 

with morphine-associated cues followed by a placebo they exhibit hyperalgesia, 

which opposes the normal analgesic properties of morphine (Siegel, 1975). The 

notion that a compensatory response may be conditioned is also used to explain 

accidental heroin overdoses that occur following drug-taking in a novel context. 

The drug-associated context elicits a conditioned compensatory response, and 

as a result the user will increase drug intake to experience the desired drug 

effects. When taken in a novel context, this compensatory response is absent, 
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and thus the same dose becomes more powerful (Siegel, Hinson, Krank, & 

McCully, 1982). Furthermore, conditioned hyperthermic responses have also 

been observed following presentation of cues associated with both opiates and 

ethanol (Siegel, 1978; Drummond, Cooper, & Glautier, 1990). Importantly, it has 

been posited that the temporal relationship between cue exposure and drug 

delivery is a crucial component of these responses. In order for a cue to elicit a 

conditioned compensatory response it must be conditioned in such a way that it 

precedes drug delivery (Tzschentke, 1998; Siegel & Ramos, 2002). If a drug-

predictive cue were to induce a conditioned compensatory response, any 

resulting drug-seeking motivation would almost certainly not be the result of the 

evoked mental representation of the drug, but instead would be the result of 

negative reinforcement.  

 There is ample experimental evidence that cocaine has aversive 

properties, and that it can support aversive conditioning. Approach-avoidance 

conflict has been described in rodents in the runway self-administration model, 

and conditioned place aversion to cocaine is observed when conditioning is done 

15 minutes following cocaine injection (Tzschentke, 1998; Ettenberg, 2004). 

These cocaine effects have been suggested to be driven by reductions in 

dopamine signaling. It has been shown that cocaine has a biphasic response in 

the VTA; an initial excitation, followed by an inhibition mediated by activation of 

the lateral habenula. The subsequent inhibitory response is required for aversive 

conditioning to cocaine effects (Jhou et al, 2013). Normally appetitive tastants 

elicit a negative affective state through association with future cocaine availability 
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(Grigson & Twining, 2002). This negative affective state is associated with 

reduced dopamine and altered activity of nucleus accumbens neurons (Wheeler 

et al, 2008; Wheeler et al, 2011). Furthermore, the magnitude of the conditioned 

aversion predicts cocaine taking (Wheeler et al, 2008). These findings appear to 

parallel observations in human drug users that drug-associated cues can elicit a 

negative affective state, characterized by feelings of anxiety and craving, and 

that craving predicts relapse (Sinha, Fuse, Aubin, & O'Malley, 2000; Sinha et al, 

2003; Robbins, Ehrman, Childress, Cornish, & O’Brien, 2000; Figure 1.8) 

Together, these findings suggest that cue-induced negative affect is an important 

factor in drug taking and relapse. It is possible that this cue-induced negative 

affective state is an important motivator of relapse through negative 

reinforcement. However, whether an aversive cocaine cue that decreases 

dopamine and causes negative affect can reinstate extinguished cocaine seeking 

remains unknown. This remains to be experimentally verified, and must be 

before conditioned changes in affective state can be considered as reasonable 

targets for therapeutics aimed at relapse prevention. 
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Current Studies 
  
 
 The studies included in this dissertation center around the role of 

aversion-induced reductions in nucleus accumbens dopamine signaling in 

motivation and learning under normal conditions and in the dysregulated state of 

drug addiction. We first set out to determine whether an aversive drug cue that 

decreases dopamine and evokes a negative affective state could cause drug 

seeking, and how the aversive drug cue altered dopaminergic and nucleus 

accumbens neuronal responses to other drug associated stimuli to drive 

behavior. We then examined the mechanistic regulation of aversion-induced 

reductions in dopamine in the VTA, and the importance of this signal to aversive 

learning in the non-addicted state. Furthermore, we examined the involvement of 

nucleus accumbens dopamine receptors in the signaling of aversion-induced 

Figure 1.8. Drug-associated cues induce a negative affective state in human drug users. 
Cocaine-dependent human subjects were presented cocaine-associated stimuli and 
non-drug associated cues. The presentation of cocaine-associated stimuli increased 
self-reported scores on indices of depression, anger, confusion, and tension. Subjects 
also reported feelings of craving induced by drug associated cues. Adapted from 
Robbins et al, 2000.  
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reductions in dopamine and requirement of reduced dopamine receptor 

activation to promote aversive learning. Using fast scan cyclic voltammetry 

coupled with site specific in vivo behavioral pharmacology, we present evidence 

in support of a model of striatal signaling by which increases and decreases in 

mesolimbic dopamine influence motivation and learning via distinct pathways. 

The importance of reduced dopamine signaling in this model is discussed in its 

relevance for our understanding of the general principles that guide how aversive 

stimuli influence behavior. Furthermore, these findings may have relevance for 

the understanding and development of treatments for disease states that involve 

dysregulated dopamine signaling, motivation, and learning.  
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CHAPTER II 
 

DRUG PREDICTIVE CUES ACTIVATE AVERSION-SENSITIVE STRIATAL 
NEURONS THAT ENCODE DRUG SEEKING 

 
 
Introduction 
 
 

Informed by drug addicts’ emotional and physiological reactions to drug-

associated cues (Childress et al, 1999; Garavan et al, 2000), theories of drug 

addiction and relapse often posit an influence of cues on drug-seeking behavior 

(Di Chiara, 1999; Robinson & Berridge, 2003; Everitt et al, 2008). These theories 

often note the desirability of these incentivized cues, which have a well-known 

neural representation in both mesolimbic dopamine signaling and cell firing in the 

nucleus accumbens. Such signals of immediate drug reward reliably increase 

striatal DA (Phillips et al, 2003), activate nucleus accumbens neurons (Hollander 

& Carelli, 2007), and promote drug seeking (Shaham et al, 2003).  

However, human addicts report that drug-associated cues induce negative 

feelings related to drug craving and anxiety that predict relapse (Sinha et al, 

2000; Sinha et al, 2003). The ability of drug cues to cause negative affect can be 

studied in animal models, and such studies have demonstrated that predictors of 

delayed drug access can cause avoidance (Tzschentke, 1998; Grigson and 

Twining, 2002), negative affect (Wheeler et al, 2008), a reduction in dopamine 

concentration (Wheeler et al, 2011), and enhanced excitatory activity in reward 

circuitry (Wheeler et al, 2008). Additionally, the degree of aversion correlates with 

enhanced drug-seeking motivation (Wheeler et al, 2011; Nyland & Grigson, 

2013; Colechio et al, 2014). The fact that appetitive and aversive stimuli can 
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differentially affect striatal circuitry has led us to hypothesize that aversive stimuli 

disinhibit a distinct aversion-sensitive striatal circuit that also drives drug seeking 

(Twining et al, 2014), possibly as an avoidance behavior (Baker et al, 2004; Koob 

& Le Moal, 2008). While recent studies have shown that correcting a reduction in 

DA signaling can attenuate drug taking and seeking (Twining et al, 2014; Willuhn 

et al, 2014), it is not clear how an aversive stimulus that decreases dopamine 

signaling simultaneously impacts striatal cell firing to promote drug seeking.  

Here we directly tested if an aversive cue can cause drug seeking, if it 

does so in a state of low dopamine tone, and if it activates neurons that encode 

the drug-seeking act. Additionally, we investigated the impact of the aversive 

drug cue on the processing of another drug-associated stimulus and drug-

seeking behavior. The potential change in the physiological response to a 

proximate cocaine cue (i.e., a cue that signals immediate drug infusion) was of 

particular interest because aversive stimuli can interact synergistically with 

proximate drug cues to drive drug seeking (Liu & Weiss, 2002; Shelton & 

Beardsley, 2005; Buffalari & See, 2009). The pattern of observed results 

supports the hypothesis that an aversive drug cue causes a sustained reduction 

in dopamine signaling, induces negative affect, and activates a subpopulation of 

striatal neurons that encode drug seeking and other drug-associated cues.  
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Materials and Methods 
 
 
General Experimental Design 

 The novel procedure presented here was inspired by traditional studies of 

context-induced renewal of drug seeking in which the self-administration context 

is shifted during extinction, and returned during test (i.e., ABA renewal; Bouton, 

2004; Crombag & Shaham, 2002). This treatment is typically compared to a 

control group that receives a context shift between self-administration and 

extinction, but not between extinction and test (the ABB control). In the present 

design, the Paired group of rats received passive exposure to a normally 

appetitive saccharin solution prior to the opportunity to self-administer cocaine 

(Figure 2.1) and the Unpaired control group received cocaine access following a 

waiting period. During extinction, Paired subjects experienced a waiting period 

followed by an extinction session, whereas Unpaired subjects received saccharin 

infusions before extinction. Finally, Paired rats experienced a reinstatement test 

session in which saccharin preceded extinction, and Unpaired rats received 

another normal extinction session that was used as a test session for behavioral 

and physiological comparisons. One potential pitfall in this novel design concerns 

the fact that saccharin is not a motivationally neutral stimulus, even in the 

Unpaired group. However, by comparing the final extinction session in the Paired 

and Unpaired groups with the test session in the Paired group, we can determine 

the potential effect of the aversive cocaine cue, an inherently-appetitive 

unconditioned stimulus, and no stimulus, on affect and drug-seeking behavior.  
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Figure 2.1. Overview of experimental design. (a) Details of the three experimental 
phases. During taste-drug training, rats experienced a waiting period during which they 
received 45 saccharin infusions (yellow) or nothing (white), followed by lever extension 
(triangle), and a response period during which cocaine and a co-occurring tone 
stimulus could be self-administered (blue). During the response period of the 
extinction and reinstatement phases, cocaine was replaced by saline (white). Paired 
rats received saccharin exposure during the taste-drug training and reinstatement 
phases, and unpaired rats received saccharin during the extinction and reinstatement 
phases. (b) Timeline of training and testing. Before being divided into groups, all rats 
self-administered cocaine with no waiting period for six daily sessions (circles). During 
the three experimental phases, rats received saccharin (yellow) or nothing (white) 
during the waiting period, and cocaine (blue) or saline (white) during the response 
period. Green and red boxes denote electrophysiology and voltammetry recording 
sessions, respectively. (c) Details of voltammetry and electrophysiology testing. 
Following extinction, both groups received saccharin infusions followed by 
noncontingent presentations of the tone while rapid dopamine release (voltammetry) 
or neuronal firing rate (electrophysiology) was monitored. In the electrophysiology 
study, this was followed by a response period during which rats could self-administer 
saline. 
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Subjects  

 Male Sprague-Dawley rats (Harlan Laboratories) weighing 275-300 g were 

individually housed in a temperature and humidity controlled AAALAC-accredited 

vivarium. Rats were maintained on a 12/12 reversed dark/light cycle and all 

experimental procedures were conducted during the dark phase (starting at 0700 

hours). Animals all had ad libitum access to food and water except where 

otherwise noted. All experimental protocols were approved by the Institutional 

Animal Care and Use Committee at Marquette University in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. A 

total of 48 rats were used in these studies, trained as described above. Subsets 

of this group were assayed for electrochemical and electrophysiological encoding 

of various aspects of the task. Fifteen (8 Paired and 7 Unpaired) were used for 

only for behavior. Twenty-five (16 Paired and 9 Unpaired) and 8 (4 Paired and 4 

Unpaired) were used for electrophysiology and voltammetry assays. 

Surgical procedures  

 All surgical procedures were conducted under ketamine/xylazine (100 

mg/kg; 20 mg/kg, i.p.) anesthesia. Intraoral and intrajugular catheter 

implantations were conducted as previously described (Wheeler et al, 2008). To 

prepare for voltammetric recordings, electrode guide cannula (BASi) were 

implanted above the NAcC unilaterally (AP: +1.3; ML: ±1.3), a bipolar stimulating 

electrode (Plastics One) was placed above the ipsilateral VTA (AP: -5.2; ML: +/-

1.0; DV: -8.0), and an Ag/AgCl reference electrode was placed contralateral to 

the guide cannula. For electrophysiological recordings, eight-wire microelectrode 
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arrays (N-B Labs) were implanted bilaterally in the nucleus accumbens at AP: 

+1.7 mm, ML: ±0.8 (NAcS) to ±1.3 mm (NAcC), DV: -6.3 mm. For each array, 

another wire was wrapped around a skull screw to serve as a ground. For all 

surgical procedures, rats were treated with the anti-inflammatory meloxicam (1% 

oral suspension) the day of, and for two days following surgery to reduce 

inflammation and postoperative pain. To maintain patency, the catheters were 

flushed daily with dH20 (i.o.) or heparinized saline and the antibiotic cephazolin 

(i.v.). 

Apparatus 

 Subjects were tested in standard operant chambers (Med Associates), 

interfaced with a computer, and housed in sound attenuating Faraday cages. 

Each operant chamber had two dedicated syringe pumps for intravenous and 

intraoral infusions that were delivered to each rat via a dual-channel fluid swivel 

(Instech Laboratories). Two retractable levers entered the chamber on the right 

side wall with a cue light directly above each. A food-pellet dispenser delivered 

45-mg grain pellets (Bioserve) to a recessed foodcup positioned between the two 

levers. A speaker capable of producing a 65-dB 1-KHz tone was located on the 

left sidewall. Under each chamber, a camera was positioned to allow for 

recording behavioral responses (taste reactivity). The chamber floor was clear 

acrylic glass and a house light was positioned on the door of the sound 

attenuating chamber, outside of the operant chamber, to ensure recording 

quality.  
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Self-Administration training 

 Following catheter implantation, subjects were allowed to recover until 

they reached pre-surgery bodyweight. Subjects were then food restricted to 90% 

bodyweight, and trained to press one of the two levers for food pellets. Upon 

acquisition of lever-press behavior, subjects were trained to self-administer 

cocaine on a fixed-ratio 1 schedule of reinforcement. The beginning of each 

cocaine self-administration session was signaled by the entry of both levers into 

the box and the illumination of two cue lights. Responses on the active lever 

resulted in a 3-s cocaine infusion (0.25 mg/0.1 ml) accompanied by cue-light 

offset, onset of a 5-s tone, and a 20-s timeout period. Responses on the active 

lever during the timeout resulted in no programmed consequences and are not 

included in the data analyses. The conclusion of the time out period was signaled 

by cue light onset. Each session was completed only when each subject reached 

a maximum infusion cap (detailed below). 

Self-administration sessions occurred in a series of 6 experimenter-

controlled 6-day cycles consisting of 3 days of cocaine self-administration and 3 

days without cocaine access in the home cage. The maximum number of 

infusions taken per session increased each cycle from a 20-infusion cap in the 

first cycle, to a 50-infusion cap in the final cycle. Upon completion of cycles 1 and 

2, subjects were separated into groups, counterbalanced for weight and average 

latency to reach to the infusion cap in the second cycle. Rats were initially trained 

for 6 sessions without a waiting period in order to balance the groups and to 

ensure the acquisition of a tone-cocaine association independent from saccharin 
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exposure. For Paired rats, all subsequent cocaine self-administration sessions 

were preceded by a 45-min waiting period during which each subject received 45 

intraoral saccharin infusions (0.15%; 0.2 ml/6 s; 1 inf/min). Unpaired subjects 

received an equivalent waiting period with no taste prior to cocaine access.  

Extinction and reinstatement 

 Upon completion of 6 cycles of cocaine self-administration all subjects 

were transitioned into the extinction phase. Before every extinction session, 

Unpaired rats received 45 intraoral infusions of saccharin, while Paired rats 

experienced a waiting period. Following the saccharin period, a 90-min extinction 

session began in which presses on the formerly active lever resulted in cue light 

offset, tone onset, and an infusion of saline. After a minimum of 5 extinction 

sessions, subjects were tested for reinstatement when they registered an 

average of 10 presses or less on the formerly active lever (excluding presses 

made during the 20 s time out period) over two consecutive sessions. Extinction 

responding was analyzed with a mixed ANOVA comparing the Paired and 

Unpaired groups across matched extinction sessions. 

Once each subject reached extinction criteria they were tested for 

saccharin-induced reinstatement of cocaine seeking. This session was 

procedurally identical to an extinction session with the exception that all subjects 

received saccharin infusions. Reinstatement was assessed by comparing 

responding in the Paired group at test with the final extinction session in both the 

Paired and Unpaired groups using t-tests. In order to assess the relationship 

between reinstatement behavior and aversion, a regression analysis was 
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performed (Pearson’s R). Because of variability in baseline rates of lever 

pressing at the end of extinction, a reinstatement ratio was computed for the 

regression analysis by dividing the total number of lever presses during test by 

the sum of number of lever presses during test and extinction.  

Taste reactivity scoring/analysis  

 Taste reactivity was analyzed in a frame-by-frame analysis using digital 

video recorded on the test session in Paired and Unpaired rats. Appetitive and 

aversive responses were counted in the saccharin period using the technique of 

Grill and Norgren (1978). Bouts of ‘wet dog shaking’, paw flailing, and mouth 

movements that matched the ‘triangle’ shape for a duration exceeding 90 ms 

were counted as aversive. Instances in which the tongue protruded and crossed 

the midline were counted as appetitive. The rates of aversive and appetitive 

events (per trial) were computed for each animal. Taste reactivity data were 

analyzed with a mixed ANOVA and subsequent planned comparisons of 

appetitive and aversive taste reactivity (events/trial) in the Paired and Unpaired 

groups. 

Voltammetry testing and data collection  

 Subjects underwent fast-scan cyclic voltammetry surgery after their 15th 

day of cocaine self-administration training. Following recovery, subjects received 

their final 3 days of self-administration and extinction as previously described. To 

familiarize the rats with the recording situation, the VTA stimulating electrode was 

harnessed to a rotating commutator (Crist Instruments) during at least one of the 

final extinction sessions. Once subjects reached extinction criteria, DA responses 
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to saccharin and tone were measured. A carbon fiber electrode was lowered into 

the nucleus accumbens core. The fiber was held at -0.4 V against Ag/AgCl 

between scans and then driven to +1.3 V and back in a triangular fashion at 400 

V/s for each voltammetric measurement. The application of this triangle 

waveform causes oxidation and reduction of chemical species that are 

electroactive within this potential range, producing a change in current at the 

carbon-fiber. Specific analytes (including dopamine and pH) are identified by 

plotting these changes in current against the applied potential to produce a cyclic 

voltammogram (Heien, Johnson, & Wightman, 2004; Heien et al, 2005). The 

current arising from electrode processes was removed by using background 

subtraction. For data collected during testing, the background period was taken 

as the minima during the 10-s before saccharin or cue presentation. This practice 

does not subtract the presence of phasic dopamine release events because the 

background was explicitly selected for the absence of dopamine signals. 

Measurements were made every 100 ms and, after driving the electrode into the 

nucleus accumbens core, the electrode equilibrated for 40 min before any data 

were collected. The position of the microelectrode was then optimized by 

monitoring the presence of spontaneously occurring dopamine release events 

(Roitman et al, 2008; Wheeler et al, 2011). Once this was observed, the 

electrode was locked in place and data collection proceeded. The experiment 

consisted of a 20-min baseline dopamine monitoring period, then a 45-min 

saccharin delivery period, followed by a 45-min tone test period during which the 

proximate cocaine cues (tone onset and cue light offset) were presented every 
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90 s. Orofacial expressions during saccharin administration were recorded and 

scored. Following the conclusion of testing, several electrical stimulation trains 

that varied in number of pulses (1, 2, 5, 10 and 20) were administered for the 

generation of a training set for principal component analysis for the detection of 

dopamine and pH changes during the behavioral session. Due to technical 

limitations of our voltammetry testing apparatus, dopamine was not measured 

during lever-press behavior. 

Analyte identification and quantification were achieved using principal 

component regression analysis described in detail elsewhere (Heien et al, 2004). 

All data presented here fit the resulting model at the 95% confidence level. 

Briefly, training sets were generated from background-subtracted cyclic 

voltammograms collected during and after electrical stimulations. At least ten 

voltammograms were obtained for dopamine and pH. The resulting current 

amplitude was converted to DA concentration based on calibration of the 

electrode in a flow injection analysis system after the in vivo experiment. To 

convert current due to oxidation of dopamine, 500 nM and 1 μM dopamine in a 

buffer (pH 7.4) were used in the flow injection analysis system. Data from each 

saccharin or cue probe presentation were background subtracted using a 1-s 

block at the local minima in the 10 s prior to presentation. The resultant current 

changes over time were converted into dopamine concentrations over time using 

a principle component regression.  
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Voltammetry data analysis 

  For each rat, trials were aligned to saccharin or tone presentation and 

averaged together. To analyze the acute effects of saccharin on dopamine, 

average concentration during a baseline epoch (10 s before infusion onset) was 

compared to average concentration during an effect epoch (10 s after infusion 

onset). Additionally, the diffuse effect of saccharin on non time-locked dopamine 

was examined by blocking baseline epoch measurements into thirds (early, 

middle, and late). Unlike the acute dopaminergic response to saccharin, which 

lasts several seconds, the observed effect of the tone was rapid (~1 s). Thus, to 

analyze the effect of the tone on dopamine concentration, the peak dopamine 

concentration observed during the 5-s tone was compared to the peak dopamine 

observed in the final 5 s of the baseline epoch. Changes in dopamine were 

analyzed using repeated measures ANOVAs and planned contrasts were used 

for direct comparisons.  

Electrophysiology recording procedures 

 Subjects underwent electrode implantation surgery after their 15th day of 

self-administration training. Recordings were conducted with microelectrode 

arrays featuring eight stainless steel wires (50 µm diameter) arranged in a 2 x 4 

configuration (N-B Labs). Following recovery, subjects received their final 3 days 

of self-administration and extinction. To familiarize the rats with the recording 

situation, they were connected to a flexible recording cable (Plexon Inc.) attached 

to a commutator (Crist Instruments) during these sessions. In order to assess 

encoding of the tone independent of lever pressing, 8 Paired and 8 Unpaired 
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subjects also experienced noncontingent tone presentations during the last 

extinction session, and during the test session. Fifteen tone trials were delivered 

at 60-s intervals after the saccharin-infusion period. After the tone testing, the 

levers were extended, and extinction/reinstatement testing commenced. The 

headstage contained 16 miniature unity-gain field effect transistors. Nucleus 

accumbens activity was recorded differentially between each active wire and an 

inactive wire chosen for an absence of neuronal activity. Online isolation and 

discrimination were accomplished using a commercially available 

neurophysiological system (OmniPlex system; Plexon Inc.). Multiple window 

discrimination modules and high-speed analog-to-digital signal processing in 

conjunction with computer software enabled isolation of neuronal signals on the 

basis of waveform analysis. The neurophysiological system incorporated an 

array of digital signal processors (DSPs) for continuous spike recognition. The 

DSPs provided a continuous parallel digital output of neuronal events to a 

computer. Another computer controlled behavioral events of the experiment (Med 

Associates) and sent digital outputs corresponding to each event to the 

OmniPlex to be time-stamped along with the neural data. Criteria for identifying 

different neurons on a single wire have been described in detail elsewhere 

(Roitman, Wheeler, & Carelli, 2005). Briefly, discrimination of individual 

waveforms corresponding to a single neuron was accomplished using template 

and principle component analysis procedures provided by the PlexControl 

software system. The template analysis procedure involves taking a sample of 

the waveform and building a template of that extracellular waveform. Subsequent 



67 
 

neurons that match this waveform are included as the same neuron. Cell sorting 

was further accomplished after the experiment was over using additional 

principle components analysis in Offline Sorter V3.3.2 (Plexon Inc.).  

Phasic response categorization  

 Phasic encoding of the saccharin, tone, and lever-press response was 

characterized by generating peri-event histograms (500-ms bins) surrounding 

each event in Neuroexplorer 4.126 (Nex Technologies). To ensure a reliable 

histogram, lever-press responses were only considered if the subject registered 

10 or more responses spaced at least 20 s apart. Each histogram was divided 

into a baseline epoch and an effect epoch based on the type of event: 1) 10 s 

immediately following the onset of the saccharin infusion, 2) 5 s immediately 

following the onset of the tone, 3) 5 s immediately preceding a lever press, 4) 5 s 

immediately following the lever press. Individual bins within the effect epochs 

were then standardized based on the mean and standard deviation of the 

appropriate baseline epoch. Neurons that exhibited two or more bins with z-

scores that exceeded or fell below three standard deviations were classified as 

excitatory or inhibitory. Because some inhibitions reached 0 Hz, but still did not 

fall below three z-scores, inhibitory responses were also included if two or more 

bins had the minimum possible z-score, provided that the effect epoch showed at 

least twice as many minimum bins as the baseline epoch. Neurons were also 

categorized based on a t-test comparison of the frequency bins of neurons that 

exhibited >15% shifts in frequency from baseline to the effect epoch (α = .05). 

After neurons were characterized, Fisher’s exact tests were used to detect any 



68 
 

differences in phasic responses and the distribution of excitatory and inhibitory 

responses in the core and shell during Paired extinction, Unpaired extinction, and 

Paired testing.  

Baseline analysis  

 An average firing rate (Hz) for each trial was drawn from the baseline 

epoch for the saccharin infusion and transformed (log10(x+.001)) in order to 

normalize the distributions (Guillem, Ahmed, & Peoples, 2014). Trials were 

grouped in thirds to capture any changes in baseline firing that might occur 

during the saccharin period. Previously categorized tone and lever-press 

encoding neurons were selectively analyzed with repeated-measures ANOVAs to 

determine whether their baseline firing rates are altered during saccharin 

exposure. One inhibitory tone-encoding neuron in the Unpaired group did not 

have sufficient data for a complete time-course analysis.  

Histology  

 After voltammetry and electrophysiology testing, subjects were euthanized 

with CO2. To verify placements of voltammetry recordings, small electrolytic 

lesions were created by running a current (250 µA) through a stainless steel 

electrode placed at the depth at which the recording took place. Brains were then 

removed and submerged in 10% formaldehyde for 14 days. For 

electrophysiology recordings, a current (20 µA) was run through the implanted 

microwires, and brains incubated in a 10% formaldehyde/4% potassium 

ferocyanide solution. All brains were then sliced into 40-µm sections, mounted, 
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stained with 0.25% thionin, and coverslipped. Figure 2.2 shows the electrode 

placements from the voltammetry and electrophysiology experiments. 

 

 

 

  

Figure 2.2. Electrode placements. (a) Electrophysiology electrode placements in the 
NAcC (Xs) and NAcS (Os) in paired (left; n=16) and unpaired (right; n=9) rats. (b) 
Voltammetry electrode placements in paired (left; n=4) and unpaired (right; n=4) rats. 
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Results  
 
 

The aversive drug cue reinstates extinguished drug seeking  

 While prior studies have demonstrated a predictive relationship 

between cue-induced negative affect and drug taking, here we tested the ability 

of an aversive drug cue to cause reinstatement. Because self-administration 

sessions had a quota/cap, all subjects took the same amount of cocaine. To 

examine the extinction data (Figure 2.3a), responses on the formerly active lever 

(excluding those made during the time out period) were analyzed. Both groups 

decreased responding similarly on the active lever across sessions (session: F (4, 

52) = 22.41, p < .01; all other ps > .19). Taste reactivity to saccharin at test 

resembled previous reports (Figure 2.3b), with Paired rats showing more 

aversive (p < .02) and fewer appetitive (p < .01) responses relative to Unpaired 

rats (group x taste reactivity: F(1, 13) = 25.75, p < .01; all other ps > .45). Paired 

rats exhibited enhanced drug seeking relative to their final extinction session 

(Figure 2.3c; t (7) = 3.85, p < .01), and Unpaired rats at test (t (13) = 2.90, p < .02). 

In contrast, responses on the inactive lever did not differ between Paired (mean = 

2.88; SE = 1.08) and Unpaired rats (mean = 2.88; SE = 1.08; t (13) = 1.68, p = 

.12). Furthermore, the aversive reaction to cocaine-associated saccharin was 

correlated with reinstatement in Paired rats (Figure 2.3d; r (6) = 0.74, p < .04).  
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Figure 2.3. The aversive drug cue causes drug seeking. (a) Lever pressing during self-
administration and extinction. Session duration varied during self-administration 
because all rats responded until they reached a progressive cap. During extinction, 
session duration was 1.5 h. The vertical dashed line depicts day of switch to 
nonreinforced responding. Responding during extinction was similar in paired (n=8) and 
unpaired (n=7) rats, mean+SE. (b) Paired rats showed more aversive taste responses to 
intraoral saccharin infusions per trial than unpaired rats ( p<0.02), whereas unpaired 
rats showed more appetitive responses than paired rats ( p<0.01). (c) Paired rats 
increased responding on the previously active lever from extinction to test ( p<0.01) 
and responded more than unpaired rats ( p<0.02). (d) The magnitude of the aversion 
caused by the drug cue predicted reinstatement ( p<0.04). A ratio>0.5 indicates an 
increase in responses on the previously active lever during test compared with 
extinction. 
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The aversive drug cue reduces dopamine and enhances neural excitation acutely  

 Consistent with observations in the nucleus accumbens shell (Wheeler et 

al, 2011), the aversive and appetitive stimuli had opposite effects on nucleus 

accumbens core dopamine levels (Figure 2.4a and b). Cocaine-predictive 

saccharin caused an acute decrease in nucleus accumbens dopamine 

concentration in the Paired group, whereas appetitive Unpaired saccharin 

caused an acute increase in DA concentration (group X epoch: F (1, 6) = 10.45, p 

< .02; group: F (1, 6) = 6.42, p < .01; epoch: p > .50).  

Also consistent with prior reports, aversive and appetitive stimuli had 

differential effects on nucleus accumbens neuronal firing rates. Figure 2.4c 

shows examples of inhibitory and excitatory neural encoding of the saccharin 

stimulus at test. Saccharin infusions were encoded by 48.39% (n = 60/124) of the 

Paired neurons and 38.84% of the Unpaired neurons (n = 40/103). Encoding of 

the aversive drug cue was predominantly excitatory in nature (n = 35/60) rather 

than inhibitory (n = 25/60). This ratio was reversed (p < .01) in the Unpaired 

group, in which encoding was predominantly inhibitory (n = 28/40) rather than 

excitatory (n = 12/40). Figure 2.4d depicts the proportion of responsive neurons 

in each subregion. 
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The aversive drug cue eliminates dopaminergic encoding of the extinguished 

proximate drug cue 

 The tone was presented after saccharin exposure to determine whether 

reinstatement behavior co-occurs with renewed dopamine encoding of the 

extinguished proximate drug cue. The results revealed the opposite (Figure 2.5a 

and b; group X epoch: F (1, 6) = 6.30, p <.05).  The proximate drug cue caused a 

rapid, transient increase in DA in the Unpaired group (p < .01), but this dopamine 

response was not observed in the Paired group (p > .70). Surprisingly, these data 

suggest that dampened dopamine signaling caused by aversive cocaine-

predictive saccharin persists during the time in which an animal transitions to 

drug seeking and diminishes the dopaminergic encoding of other drug predictive 

cues.  

 

Figure 2.4. The aversive drug cue reduces DA and enhances neural excitation acutely. (a) 
Average color plots from representative unpaired (left) and paired (right) rats showing 
dopaminergic responses to saccharin (horizontal red line). The figures show current 
changes (nA; z-axis) plotted against voltage (V; y-axis) and time (s; x-axis). (b) Relative to 
the 10 s baseline epoch, saccharin acutely increased DA concentration (nM) in unpaired 
rats (left) and decreased DA concentration in paired rats (right; p<0.02). Black lines show 
average concentration over time and red lines indicate SE for each group. Bars depict 
overall averages from the baseline and saccharin epochs. (c) Rasters and histograms depict 
examples of inhibitory (left) and excitatory (right) changes in firing rate time-locked to the 
presentation of saccharin. Individual action potentials during each saccharin presentation 
are shown in the raster, and firing rate (Hz) is shown in the histogram below. (d) 
Categorization of responses to saccharin in all recorded neurons. Unpaired neurons (left) 
show more excitatory than inhibitory responses to saccharin, whereas paired neurons 
(right) show more inhibitory than excitatory responses (p<0.01). 
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The aversive drug cue augments excitatory neural encoding of the extinguished 

proximate drug cue 

 Considering the suppression of dopamine encoding of the tone in the 

Paired group, the neural encoding of this stimulus was of particular interest. The 

tone was encoded by 27.78% (n = 20/72) of Paired neurons on the last day of 

extinction and 25.37% (n = 17/67) of Paired neurons at test. In the Unpaired 

group, 22.0% (n = 16/73) of Unpaired neurons encoded the tone at test, 

indicating no effect of group or treatment on the overall proportion of tone-

encoding neurons in the nucleus accumbens (ps > .40). However, the nature of 

these phasically-active neurons (excitations or inhibitions) varied based on the 

treatment and brain region (Figure 2.5c and d). Tone-encoding neuronal 

responses were roughly evenly distributed between excitations and inhibitions in 

the Unpaired condition (excitation/inhibition ratio: core ns = 4/3, shell ns = 3/6; p 

= .62), as well as the Paired condition during extinction (core ns = 3/4, shell ns = 

6/7; p = .63). However, the presence of the aversive, drug-predictive cue induced 

a significant shift toward excitatory responses in the nucleus accumbens core in 

the Paired group at test (ns = 7/0) relative to the NAcS (ns = 4/6, p < .04). Thus, 

a shift toward excitatory encoding co-occurred with the suppression of dopamine 

encoding.   
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The examination of neural encoding of drug-seeking was restricted to rats 

that registered enough lever presses to produce a reliable histogram, which 

limited the analysis to rats in the Paired group at test (n = 5). Overall, 34.38% (n 

= 11/32) of nucleus accumbens core and 37.5% (n = 6/16) of nucleus 

accumbens shell neurons encoded one or more aspects (pre- and/or post- 

response) of the lever-press behavior. Of the phasically-active nucleus 

accumbens core neurons, 54.55% (n = 6/11) exhibited some form of excitatory 

encoding, and 54.55% (n = 6/11) exhibited inhibitory encoding (1 neuron 

exhibited a phasic decrease before and a phasic increase after the response), 

whereas nucleus accumbens shell neuronal responses were 33.33% (n = 2/6) 

excitatory and 66.67% (n = 4/6) inhibitory (Figure 2.6a and b). 

Figure 2.5. The aversive drug cue eliminates DA encoding and augments excitatory neural 
encoding of the proximate drug cue. (a) Average color plots from a representative 
unpaired (left) and paired (right) rat showing the dopaminergic response to the 
proximate drug cue (tone; horizontal red line). The figures show current changes (nA; z-
axis) plotted against voltage (V; y-axis) and time (s; x-axis). (b) Relative to the 5 s baseline 
epoch, the tone caused a brief increase in DA concentration (nM) in unpaired rats 
(p<0.01), and this response was abolished by the preceding experience of the aversive 
drug cue in paired rats (p =0.70). Black lines show average concentration over time and 
red lines indicate SE for each group. Bars depict average peak DA from the baseline and 
tone epochs. (c) Rasters and histograms depict examples of inhibitory (left) and 
excitatory (right) neural encoding of the tone. Individual action potentials during each 
tone presentation are shown in the raster, and firing rate (Hz) is shown in the histogram 
below. (d) Categorization of responses to the tone in all recorded neurons. Paired 
neurons (right) show more excitatory encoding in the core relative to the shell at test 
(p<0.04), but this difference in excitatory encoding was not apparent in paired neurons 
during extinction (center; p<0.63) or in unpaired neurons (left; p=0.62). 
 



78 
 

 

 

The aversive drug cue reduces baseline dopamine and enhances the baseline 

excitability of neurons that will encode future drug-seeking behavior 

 In the nucleus accumbens shell, an aversive drug cue causes a long term, 

diffuse depression of dopamine concentration as well as an acute time-locked 

Figure 2.6. NAc neurons encode responses during reinstatement of cocaine 
seeking. (a) Representative inhibitory (left) and excitatory (right) encoding of 
lever press at test. Individual action potentials aligned to each lever press (red 
arrows) are shown in the raster, and firing rate (Hz) is shown in the histogram 
below. (b) Categorization of lever-press encoding in paired neurons at test. 
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dopamine decrease (Wheeler et al, 2011). The presence of the diffuse 

depression might be especially important for reinstatement of drug-seeking 

(Twining et al, 2014). We tested for the presence of this phenomenon here by 

performing an analysis of baseline (10 s pre infusion) dopamine concentration in 

the nucleus accumbens core across trials during the saccharin exposure period 

(Figure 2.7a). The baseline period was blocked into early and late session 

dopamine concentration. One subject in the Paired group lacked sufficient data 

to construct a complete time-course and could not be included in this analysis, 

but it was clear that baseline dopamine concentration changed in a non time-

locked manner across trials differentially depending on group (Figure 2.7c; group 

X trial block: F (1, 5) = 22.39, p < .01; all other ps > .20). Planned comparisons 

revealed that appetitive, unpaired saccharin increased basal dopamine 

concentration across trials (p < .02), and aversive, cocaine-predictive saccharin 

decreased basal dopamine concentration across trials (p < .03). 

Because fluctuations in dopamine can modulate neural excitability 

(Surmeier, Ding, Day, Wang, & Shen, 2007), we were interested in how diffuse 

changes in DA might relate to the baseline excitability of nucleus accumbens 

neurons. Furthermore, we isolated neurons that would later go on to encode the 

proximate drug cue or drug-seeking behavior in the next phase of testing to 

determine whether paired saccharin differentially impacted the behavior of these 

neurons (Figure 2.7d). Because of the limited number of previously categorized 

neurons, both categories of responses (inhibitory and excitatory) were combined 

for this analysis. Changes in baseline firing rates were assessed by blocking the 
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saccharin period into thirds and generating 3 average baseline firing rate 

measurements for each neuron. An ANOVA revealed a significant interaction 

between all factors (trial block X group X subregion: F (2, 56) = 4.20, p = .02) and a 

marginal interaction between group and trial block (F (1, 25) = 3.87, p = .05) but no 

other effects (ps > .17). A post-hoc analysis showed that the aversive cocaine 

cue caused an increase in the baseline firing rates from the beginning to the end 

of the saccharin period specifically in nucleus accumbens core neurons that 

would later encode the tone cue (Figure 2.7d; p < .05; all other ps > .80). 

Notably, all of the Paired core neurons that increased their baseline firing rates 

were recorded in subjects that exhibited reinstatement (reinstatement ratios 

> .50), whereas the single neuron that did not increase firing rate across the 

saccharin session was recorded in a subject that did not show appreciable 

aversive taste reactivity (< 0.50 aversive events/trial) or reinstatement.  
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Figure 2.7. The aversive drug cue reduces DA and enhances excitability of neurons that 
will encode future drug-seeking behavior. (a) Baseline DA (nM; z-axis) across trials ( y-
axis) throughout the saccharin period in a representative paired rat. (b), Baseline firing 
rate (Hz; z-axis) across trials (y-axis) throughout the saccharin period in a representative 
tone-encoding neuron from a paired rat. (c) Difference scores (late– early) of average 
baseline DA concentrations (nM) in paired and unpaired rats. Saccharin reduced baseline 
[DA] over time in paired rats (p <0.03), and increased baseline [DA] in unpaired rats 
(p<0.02). (d) The change in baseline firing rates (log Hz) in units that subsequently 
encoded the tone. In the paired group, saccharin increased firing rates in tone responsive 
units in the NAcC (p<0.05), but had no effect in the NAcS or in unpaired rats (p values > 
0.80). (e) The change in baseline firing rates in lever press response units in paired rats. 
Saccharin increased baseline firing rates in both the NAcC and NAcS (p<0.03). (f) The 
change in baseline firing rates in all recorded units before saccharin infusion in paired 
and unpaired rats. Saccharin reduced baseline firing rates in the full population of 
recorded neurons (p<0.01). 
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Similar to tone-encoding neurons in the core, neurons that encoded drug 

seeking exhibited a change in baseline activity during exposure to the aversive 

saccharin stimulus (Figure 2.7e). In this case, baseline firing rates in both the 

core and shell neurons increased during the saccharin period (F (2, 18) = 4.51, p 

< .03; all other ps > .09). Importantly, an analysis of all neurons (including non-

encoding neurons) showed that most baseline firing rates decreased during the 

saccharin period regardless of group (Figure 2.7f; F (2, 420) = 4.88 p < .01), and 

baseline activity in the Paired group was generally higher than the Unpaired 

group (F (1, 210) = 7.37, p < .01; all other ps > .07). Considering the general 

downward trend in baseline activity, the increase in firing rate in neurons that 

encode drug seeking or the proximate drug cue is exceptional.  

 
 
Discussion  

 
 
 The present findings show that a natural reward that signals 

delayed access to cocaine becomes aversive and reinstates drug seeking after 

extinction. The presence of this aversive drug cue decreases acute and diffuse 

dopamine release in the nucleus accumbens core and increases the baseline 

firing rates of neurons that will subsequently encode the proximate cocaine cue 

and cocaine-seeking behavior. Furthermore, the aversive drug cue also 

eliminates the dopaminergic encoding of the proximate drug cue. This 

demonstrates a pronounced depression of dopamine signaling that persists long 

after the aversive drug cue is removed. At the same time, excitatory encoding of 

the proximate cue is enhanced specifically in the nucleus accumbens core. This 
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relationship between dampened dopamine signaling and enhanced neural 

excitability provides insight into how negative affect can drive compensatory 

drug-seeking behavior. 

Behavioral design  

 The present design differs from studies of noncontingent drug cue- and 

context-induced reinstatement (Crombag & Shaham, 2002; Saunders, Yager, & 

Robinson, 2013) because it allows for direct assessment of the affective state of 

the animal during cue exposure. It differs from cue-induced reinstatement 

designs in which subjects receive response-contingent presentations of an 

unextinguished drug cue (Davis & Smith, 1976) because it is not directly driven 

by the conditioned incentive value of the saccharin cue (which is presumably 

punishing). As such, it is capable of providing unique insight to the physiological 

mechanisms underlying the induction of negative affect by drug cues, and is 

useful for modeling cue-induced changes in affective state that may promote 

relapse in human addicts.  

The present design resembles other context-induced reinstatement 

models in that the extinction context (Unpaired saccharin in our design) could be 

an omission cue. Thus, the critical behavioral and physiological differences 

between the groups could be due to the presence of an omission signal 

suppressing behavior in the Unpaired group, rather than the presence of an 

aversive drug cue in the Paired group inducing behavior. Several observations 

make this unlikely. First, both groups extinguished at the same rate, suggesting 

that the Unpaired cue was not being used as an omission signal to guide 
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behavior. Also, electrophysiological responses to the tone did not differ during 

extinction in the Paired and Unpaired groups, indicating that the presence of a 

potential omission signal did not influence encoding of the proximate cue.  

Finally, recent findings indicate that the presence of an innately aversive taste 

stimulus is sufficient to cause drug seeking. We observed a similar level of 

reinstatement following exposure to quinine, an inherently-aversive stimulus that 

had no association with drug access (Twining et al, 2014). Similarly, in the 

present study the magnitude of the reinstatement effect was positively correlated 

with the expression of aversion. Together these observations indicate that it is 

the aversive status of the cocaine cue, and the negative affect and 

neurochemical environment that it engenders, that induce drug seeking.  

The impact of an aversive drug cue on dopaminergic encoding of a proximate 

drug cue 

 The observation of persistent dopaminergic encoding of an extinguished 

drug cue in the Unpaired group may be surprising, but it is consistent with 

contemporary theory regarding the product of extinction. Extinction produces 

suppression of behavior, but without direct physiological intervention (Lee, Milton, 

& Everitt, 2006; Otis, Dashew, & Mueller, 2013) or perhaps precise timing 

(Monfils, Cowansage, Klann, & LeDoux, 2009), it does not result in a loss of 

learning (Bouton, 2004; Miller & Matzel, 2006). Neural processing of an 

extinguished drug cue is an interaction between memories of reinforcement and 

nonreinforcement, and the dopamine response likely reflects this ambiguity. As 

such, it is not surprising that brain chemistry is more reactive to an extinguished 
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drug cue than a non-associated behaviorally inert stimulus, which does not 

typically elevate nucleus accumbens dopamine (Phillips et al, 2003).  

The fact that reinstatement behavior was accompanied by a suppression 

of the dopaminergic encoding of a proximate drug-cue was surprising. Even so, 

the present result is more intuitive when informed by observations of dopamine 

signaling during cocaine self-administration. For example, rats that exhibit 

escalated drug use actually show attenuated dopamine encoding of drug-taking 

behavior (Willuhn et al, 2014). Furthermore, drug taking is reduced when positive 

dopamine encoding is restored through pharmacological intervention. That is, 

rats seek more cocaine because dopamine encoding is depressed, and reduce 

responding when it is restored (Willuhn et al, 2014). In this light, it is provocative 

to consider the possibility that if the acute dopamine elevation mediates the 

suppression of drug taking; it is possible that positive dopamine signaling also 

works to suppress drug seeking after extinction. The aversive drug cue may spur 

behavior, in part by eliminating this neurochemical event. This explanation is 

consistent with the observation that vigorous cocaine seeking/taking behavior 

tends to be preceded by reductions in nucleus accumbens dopamine (Wise et al, 

1995; Tsibulsky & Norman, 1999; Stuber, Wightman, & Carelli, 2005).  

In contrast to the present results, it is important to recognize that some 

aversive stimuli can increase dopamine and reinstate drug seeking. For example, 

electric foot shock increases nucleus accumbens dopamine as measured by 

microdialysis, and this increase in dopamine is sustained as drug seeking is 

reinstated (McFarland, Davidge, Lapish, & Kalivas, 2004). There are many 
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factors that may contribute to this discrepancy (Wenzel, Rauscher, Cheer, & 

Oleson, 2014). The nociceptive stimulation produced by electrical foot shock is 

typically very brief, discrete, and naturally engages robust locomotor behaviors 

that facilitate escape from the experimental context. In contrast, the taste 

infusions used here are relatively long, occur over an extended period of time, 

and induce behaviors of gustatory rejection that involve little locomotion 

(culminating with passive rejection). It is noteworthy that aversive gustatory 

stimuli can elevate dopamine in the nucleus accumbens (Bassareo, De Luca, & 

Di Chiara, 2002), indicating that modality is not the only critical factor. Regardless 

of the root cause(s) of this discrepancy, it is important to examine these different 

situations because both can lead to enhanced drug seeking, and may do so 

through dissociable mechanisms.  

The role of NAc neural and neurochemical signaling in drug seeking 

 Broadly, activity in the nucleus accumbens mediates reinstatement 

phenomena (Bossert, Marchant, Calu, & Shaham, 2013). Disrupting activity in 

the nucleus accumbens attenuates stress-, cue-,  cocaine-, and context- induced 

reinstatement (Cornish & Kalivas, 2000; Fuchs, Evans, Parker, & See, 2004; 

McFarland et al, 2004; Fuchs, Ramirez, & Bell, 2008; Xie et al, 2012). 

Specifically, corticostriatal glutamatergic projections drive relapse phenomena 

(McFarland et al, 2003; McFarland et al, 2004; Stefanik et al, 2013). In the 

present experiments, reinstatement was associated with enhanced excitability in 

two ways. First, exposure to the aversive drug cue elevated the baseline 

excitatory activity of neurons that would eventually encode the proximate drug 
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cue and/or drug-seeking behavior. This observation reveals a physiological 

mechanism that directly connects cue-induced negative affect to the subsequent 

drug-seeking act. Second, the aversive drug cue caused drug seeking and 

enhanced excitatory encoding of the proximate drug cue. This change in cue 

reactivity could contribute to the reinstated drug seeking observed here and in 

studies that show behavioral synergy between aversive stimuli and proximate 

drug cues (Liu & Weiss, 2002; Buffalari & See, 2009), even if the proximate drug 

cue has been extinguished (Shelton & Beardsley, 2005).  

The relationship between decreased dopamine signaling and a shift toward 

excitatory activity  

 The effect of dopamine on striatal neural activity is complex and depends 

on a number of factors, such as D1-like and D2-like receptor expression, as well 

as the collateral influence of dopamine-sensitive interneurons (Surmeier et al, 

2007). In general, D1-like receptor activation enhances excitability (Surmeier, 

Bargas, Hemmings, Nairn, & Greengard, 1995); appetitive stimuli preferentially 

activate D1-expressing neurons (Xiu et al, 2014); and excitatory encoding of 

motivated behavior coincides with and is sometimes contingent upon elevated 

dopamine signaling in the nucleus accumbens (Owesson-White et al, 2009; 

Cacciapaglia, Wightman, & Carelli, 2011). In contrast, D2-like receptor activation 

inhibits neuron excitability (Hernandez-Lopez et al, 2000); D2-expressing 

neurons are preferentially activated by aversive stimuli (Xiu et al, 2014); and 

acute inhibition of dopamine signaling induces aversion by activating D2-

expressing neurons in the nucleus accumbens (Danjo et al, 2014). Given our 
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coincident observations of decreased dopamine signaling, increased nucleus 

accumbens activity, and behavioral signs of negative affect, we hypothesize that 

the current results reflect a disinhibited D2-mediated aversion-sensitive striatal 

circuit (Figure 2.8). 

 

 

 

The product of aversion-induced neural activation has been linked to 

behavioral inhibition (i.e., no-go; Nakanishi, Hikida, & Yawata, 2014), but 

activation of D2-like expressing neurons is also important for directing new 

behaviors that avoid aversive outcomes (Mehta, Swainson, Ogilvie, Sahakian, & 

Figure 2.8. Model of striatal circuitry involved in cue-induced relapse. Rewarding stimuli 
and their predictors activate VTA dopamine neurons, causing an increase in nucleus 
accumbens dopamine concentration. This promotes excitability of D1-expressing 
medium spiny neurons that have been implicated in drug-primed and cue-induced 
reinstatement of drug seeking. Conversely, aversive drug cues impinge on the VTA 
which causes a reduction in dopamine tone in the nucleus accumbens and the 
induction of a negative affective state. This promotes the excitability of D2-expressing 
medium spiny neurons and avoidance behavior. In this model, drug seeking can also be 
viewed as an avoidance behavior. In this case, drug seeking results from the avoidance 
of an induced negative affective state.  
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Robbins, 2001; Yawata, Yamaguchi, Danjo, Hikida, & Nakanishi, 2012; Porter-

Stransky, Seiler, Day, & Aragona, 2013). This convergent evidence strongly 

suggests that cue- and aversion-induced reductions in dopamine signaling play a 

critical role in enhancing the excitability of neurons that encode proximate drug 

cues and drug-seeking behavior. The interaction between negative affect, 

dampened dopamine signaling, and enhanced neural excitability highlights a 

physiological substrate by which negative reinforcement mechanisms can 

augment cue reactivity and drive behavior. This aversion-driven behavioral 

modulation could be directed toward escape in adaptive behavioral contexts, but 

in a drug seeking context, it may promote drug seeking in an effort to correct the 

negative affective state. Future experiments will be needed to investigate the 

precise causal role of physiologically-relevant dopamine reductions in initiating 

this maladaptive cascade of events. 
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CHAPTER III 

LEARNED AVOIDANCE REQUIRES VTA KOR-MEDIATED  
REDUCTIONS IN DOPAMINE 

 
 
Introduction 
 
 
 The ability to adjust behavior appropriately following the experience of an 

aversive outcome is an essential and evolutionarily conserved brain process, as 

failure to learn from adverse experiences predisposes animals to future danger. 

Interestingly, variability in this complex trait is noticeable in humans and thought 

to give rise to specific personality characteristics (Carver & White, 1994). Clinical 

research suggests that more extreme variance in punishment sensitivity 

contributes to a diverse array of mental disorders that are characterized by lack 

of behavioral restraint, including conduct disorder, attention deficit hyperactivity 

disorder, and compulsive gambling (Luman, Oosterlaan, Knol, & Sergeant, 2008; 

Fairchild et al, 2009; de Ruiter et al, 2009) and is present in dopaminergic 

neurodegenerative disease (Frank, Seeberger, & O'reilly, 2004). Yet despite the 

obvious clinical importance, the neural circuits that regulate punishment learning 

remain largely uncharacterized.  

 Recent data indicate that both rewarding and aversive experiences shape 

future behaviors by acting on the mesolimbic dopamine system. Considerable 

convergent evidence indicates that rewarding stimuli promote appetitive 

association, in part, by increasing mesolimbic dopamine signaling. Far less is 

known about how avoidance-inducing environmental situations impact this 

system. However, there is mounting evidence from electrophysiological studies 
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of midbrain dopamine neurons and electrochemical monitoring of terminal 

dopamine release that aversive stimuli and their predictors can induce rapid 

reductions in nucleus accumbens dopamine signaling (Ungless et al, 2004; 

Roitman et al, 2008; Badrinarayan et al, 2012; Tan et al, 2012; Twining et al, 

2014). These aversion-induced reductions in dopamine commonly occur with the 

induction of a negative affective state (Wheeler et al, 2008; Wheeler et al, 2011), 

and the activation of aversion-sensitive striatal neurons (Wheeler, Robble et al, 

2015). The coincidence of aversion-induced reductions in dopamine signaling 

and striatal activation is consistent with the proposal that reductions in dopamine 

signaling disinhibit dopamine D2 receptor-expressing MSNs (Frank et al, 2004; 

Dreyer, Herrik, Berg, & Housgaard, 2010). Activation of this specific NAc output 

pathway has been linked to behavioral suppression (Lobo et al, 2010; Kravitz et 

al, 2012) and the ability to properly learn about aversive outcomes (Yawata et al, 

2012; Porter‐Stransky et al, 2013; Danjo et al, 2014). However, the mechanisms 

by which aversive stimuli impact NAc dopamine to influence aversion learning 

remain largely uncharacterized. 

 The kappa opioid receptor (KOR) system is a likely mechanism by which 

aversive stimuli impinge on mesolimbic dopamine signaling. Activation of KORs 

is aversive, and induces dysphoria and depressive-like behaviors in both humans 

and rodents (Pfeiffer, Brantl, Herz, & Emrich, 1986; Shippenberg & Herz, 1986). 

KORs and the dynorphins, their endogenous ligands, are highly enriched in 

limbic and midbrain areas involved in motivation and learning, specifically the 

NAc and the VTA (Pickel, Chan, & Sesack, 1993; Mansour et al, 1994; 
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Muschamp et al, 2014). Stress-induced behavioral responses are blocked by 

systemic KOR antagonist treatment and are absent in dynorphin knockout mice 

(Land et al, 2008). Furthermore, activation of KORs decreases NAc dopamine 

which likely contributes to their aversive properties (Britt & McGehee, 2008; 

Ebner, Roitman, Potter, Rachlin, & Chartoff, 2010). While the regulation of 

aversion-related behaviors by KORs has been studied extensively by systemic 

and local manipulation in limbic regions (Van’t Veer & Carlezon, 2013), 

considerably less is known about the potential role for VTA KOR regulation of 

dopamine release and aversion learning.  

 Recent studies have begun to characterize the functional role of VTA 

KORs in aversion learning (Chefer, Backman, Gigante, & Shippenberg, 2013; 

Enrich et al, 2015). However, it is still unclear under what circumstances 

activation of these receptors regulates mesolimbic dopamine signaling. 

Electrophysiological studies of midbrain dopamine neurons have yielded 

conflicting results concerning whether or not KORs on nucleus accumbens-

projecting dopamine neurons are functional (Ford, Mark, & Williams, 2006; 

Margolis et al, 2006). Notably, evidence of functional KORs expressed 

presynaptically on VTA glutamatergic and GABAergic inputs reveals the potential 

for these receptors to modulate nucleus accumbens-projecting dopamine 

neuronal activity (Margolis, Hjelmstad, Bonci, & Fields, 2005; Polter et al, 2014), 

but whether KOR activation is necessary for aversion-induced reductions in 

dopamine remains unknown. This question is critical to understanding how 

aversive stimuli engage brain circuitry that guides future behavior through 
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learning. In these studies, we scrutinized how blockade of VTA KORs impacted 

aversion-induced reductions in nucleus accumbens dopamine, and punishment 

learning. Our findings demonstrate the necessity of both VTA KOR activation and 

reductions in nucleus accumbens dopamine for aversive learning.  

 
 
Methods and Materials 
 
 
Subjects 

 42 male Sprague-Dawley rats (275–300 g; Harlan Laboratories, St. Louis, 

Missouri) were individually housed in a temperature- and humidity-controlled, 

Association for Assessment and Accreditation of Laboratory Animal Care 

accredited vivarium. Rats were maintained on a 12/12-hour reversed cycle (lights 

off at 7 AM) and had ad libitum access (unless otherwise noted) to water and 

food (Teklad; Harlan Laboratories). All experimental protocols were approved by 

the Institutional Animal Care and Use Committee at Marquette University in 

accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. 

Surgery 

 All surgical procedures were conducted under ketamine/xylazine (100 

mg/kg / 20 mg/kg, intraperitoneal) anesthesia. Intraoral catheter implantations 

were conducted as previously described (Twining et al, 2014). Guide cannulas 

for microinjections (26-gauge; Plastics One, Roanoke, Virginia) were implanted 

bilaterally immediately above the VTA (AP: -5.6; ML: +/-2.2 at 11º angle; DV: -

7.0) or above the nucleus accumbens shell (AP: -1.7; ML: +/-1.9 at 9º angle; DV: 
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-6.7). To prepare for voltammetric recordings, electrode guide cannula were 

implanted above the nucleus accumbens shell unilaterally (AP: +1.7; ML: +/-0.8), 

and a silver/silver chloride reference electrode was placed contralateral to the 

guide cannula. For all surgical procedures, rats were treated with meloxicam (1% 

oral suspension) during recovery. 

Microinjections  

 Microinjectors extended 0.5 mm from the end of the guide cannula. Sterile 

saline or the KOR antagonist nor-Binaltorphimine (Nor-BNI, 2.5 µg/120s) 

(Graziane, Polter, Briand, Pierce, & Kauer, 2013) was bilaterally injected into the 

VTA. Sterile saline or the dopamine D2-like receptor agonist quinpirole (1.0 

µg/60s) (Porter-Stransky et al, 2013) was bilaterally injected into the nucleus 

accumbens shell. Microinjectors were left in place for 2 minutes after each 

injection to allow for diffusion.  

Voltammetric recordings  

 Twenty-four hours prior to recordings, rats (n=10) received bilateral 

microinjections of either vehicle or Nor-BNI into the VTA. Following injection, rats 

were habituated for 2 hours in the voltammetric recording environment, 

consisting of a clear Plexiglas chamber (Med Associates, St. Albans, Vermont) 

housed in a custom-designed Faraday cage. The headpiece was harnessed to a 

rotating commutator (Crist Instrument Co., Hagerstown, Maryland), and one 

intraoral cannula was harnessed to a fluid swivel (Instech Laboratory, Plymouth 

Meeting, Pennsylvania) that could receive fluid from a syringe pump (Razel, St. 

Albans, Vermont). On the following day, voltammetric recordings were conducted 
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as previously described (Wheeler et al, 2011). Briefly, a carbon fiber electrode 

was lowered into the nucleus accumbens shell, a fluid line was attached to the 

intraoral cannula, and the behavioral session was initiated. The experiment 

consisted of a 30-minute baseline dopamine monitoring period followed by a 50-

minute quinine delivery period. Throughout the quinine delivery period, a 6-

second infusion of 0.2mL quinine (0.001M) was delivered approximately every 

minute in the absence of any audio/visual cues. Orofacial reactions to quinine 

delivery were recorded and scored to determine whether Nor-BNI altered the 

palatability of quinine. 

Voltammetric data analysis  

 Specific analyte identification and quantification were achieved using a 

principal component regression analysis as previously described (Heien et al, 

2004). Dopamine was detected with a chemometric analysis using previously 

recorded training sets matched for dopamine oxidation potential and average 

amplitude of spontaneous dopamine release events (Twining et al, 2014). The 

resulting current amplitude was converted to dopamine concentration based on 

average post experiment electrode calibration (Wheeler et al, 2011). Individual 

trials were aligned to the initiation of a quinine infusion. Data from each trial (10s 

pre, and 30s post quinine infusion) were background subtracted at the local 

minima in the 10 seconds prior to quinine infusion. For each rat, data were 

averaged across the quinine infusion trials in the 10 seconds following the 

initiation of the quinine infusion period (Quinine) compared with the previous 10-

second period (Pre Quinine) and the next 10-second period (Post Quinine). The 
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resultant current changes over time were analyzed for dopamine changes using 

principle component regression. Changes in dopamine were analyzed using a 

2X3 mixed ANOVA and planned contrasts were used for direct comparisons. 

Statistical analyses of all behavioral and electrochemical data were performed 

using commercially available software (Statistica). 

Punishment behavioral design  

 Rats were placed under mild food deprivation and maintained at 90% 

body weight for the entirety of the experiment. Once body weight reached 

criteria, subjects began training to lever press for an intraoral infusion of sucrose 

(20% sucrose, 0.1ml/inf). Subjects were trained on each lever in separate 

sessions across days and the training order was randomized (n=12). Training 

sessions had a maximum duration of 1 hour, but terminated earlier if 50 rewards 

were obtained. The schedule of reinforcement was then increased from a fixed 

ratio (FR) 1, to FR3, and finally to FR5 as subjects met criteria. Following 

training, subjects were given 5 daily 1 hour sessions in which they received 

access to both levers simultaneously (Maintenance, Figure 2A). Responses on 

either lever resulted in sucrose delivery on an independent variable interval (VI) 

45s schedule of reinforcement. Following the 5th session, subjects received 

bilateral intra VTA microinjections of either Nor-BNI (2.5µg) or vehicle. Twenty-

four hours following microinjection, subjects received a punishment session in 

which responses on one lever resulted in intraoral infusion of quinine (0.001M, 

0.1ml/inf) on a VI45s schedule of punishment and responses on the other lever 

had no programmed consequences (Punishment, Figure 2B). The punished lever 
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was counterbalanced. A pilot study showed that within session punishment 

learning is not apparent in this design (data not shown). As a result rats were 

tested in extinction on the following day to assess punishment learning (Test, 

Figure 2C). In this session, responses on either lever resulted in no programmed 

consequences. Following testing, subjects were euthanized and brains were 

collected for histological verification of cannula placement. In a subsequent 

experiment, the D2-receptor agonist, quinpirole, or vehicle was microinjected into 

the nucleus accumbens shell 15 minutes prior to the punishment session (n=14). 

All other aspects of the experiment were identical.  

Punishment data analysis  

 Reponses made during the final day of Maintenance, Punishment, and the 

subsequent Test phase were analyzed. To account for generalized punishment 

effects, a criterion of 10 lever presses during the final test session was imposed 

and rats that did not meet this response requirement were excluded from data 

analysis (n=6). To account for variability lever-press behavior, a preference ratio 

was calculated and analyzed. Preference was calculated as the number of 

responses on the previously punished lever / total number of responses made on 

both levers. The same ratio was calculated for the 5th day of training. A ratio of .5 

indicates no preference, whereas any value below .5 indicates avoidance of the 

punished lever. Behavioral results were analyzed using a mixed ANOVA and 

subsequent direct comparisons were made using planned contrasts.  

 

Taste reactivity scoring 
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 Taste reactivity was analyzed in a frame-by-frame analysis using digital 

video recorded on the voltammetry test day in Nor-BNI and vehicle injected rats 

(n=5 in each group). Appetitive and aversive orofacial movements were counted 

during and for 4 seconds immediately following quinine infusion using the 

technique of Grill & Norgren (1978). Mouth movements that matched the triangle 

shape for a duration exceeding 90 msec, as well as “paw flails” and “wet dog 

shakes” were counted as aversive. These criteria excluded all neutral and 

ingestive mouth movements.  

Histology 

 Upon completion of each experiment, rats were euthanized with carbon 

dioxide. To verify recording electrode placement in rats used for voltammetry 

testing, small electrolytic lesions were created by running a current (250mA) 

through a stainless steel electrode placed at the depth at which the recording 

took place. Brains were removed and fixed in 10% formaldehyde for at least 14 

days. Brains were then sliced into 40µm sections, mounted, stained with 0.25% 

thionin, and cover slipped. Representations of electrode and cannula placement 

from voltammetry and behavioral studies are shown in Figure 3.1.  
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Figure 3.1. Histological reconstruction of recording electrode and cannula placements 
from voltammetry and punishment experiments. Infusions of Nor-BNI / quinpirole are 
represented with “X”s and vehicle infusions are represented with “O”s. (A) Placements 
of bilateral Nor-BNI injections from voltammetry recordings (n=10). (B) Placements of 
bilateral Nor-BNI injections in punishment behavioral task (n=12). (C) Placements of 
voltammetry recording electrodes in the NAc (n=10). (D) Placements of bilateral 
quinpirole infusions in punishment behavioral task (n=14). 
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Results 
 
 
Blockade of VTA kappa opioid receptors attenuates aversion-induced reductions 

in nucleus accumbens shell dopamine.  

 To test whether KOR activation contributes to aversion-induced reductions 

in dopamine signaling, we monitored subsecond changes in nucleus accumbens 

shell dopamine concentration in response to an aversive taste stimulus using fast 

scan cyclic voltammetry. Prior to the recording session, rats received bilateral 

VTA microinfusions of either the KOR antagonist, nor-Binaltorphimine (Nor-BNI) 

or vehicle. Following a dopamine monitoring period, rats were given 50, brief 

intra-oral infusions of quinine. Individual trials were aligned to quinine infusion 

onset, and changes in dopamine concentration were then averaged. These 

averages were blocked into three periods, each 10s in duration (pre-quinine, 

quinine, post-quinine) for statistical analysis. A 2X3 mixed ANOVA (Group X 

Period) revealed significant main effects of group (F(1,8) = 12.00, p < 0.01) and 

of period (F(1,8) = 9.89, p < 0.01). No significant interaction was observed (p > 

0.1). Planned contrasts revealed that groups did not differ during the Pre Quinine 

period (F(1,8) = 1.11, p > 0.3). However, quinine caused a greater reduction in 

dopamine concentration in vehicle treated rats compared to Nor-BNI treated rats 

(F(1,8) = 12.48, p < 0.01, Figure 3.2b and c). One reliable characteristic of a 

quinine-induced reduction in dopamine concentration is that it persists beyond 

the termination of quinine delivery. A comparison of vehicle and Nor-BNI groups 

in the post quinine period revealed that vehicle treated rats also exhibited 

significantly lower dopamine concentration in this period (F(1,8) = 6.58, p < 0.05, 
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Figure 3.2c). Orofacial reactions to quinine delivery were recorded and scored to 

determine the influence of VTA KOR blockade on the hedonic perception of 

quinine. Groups did not significantly differ in their disgust reactions to quinine 

(F(1,8) = 0.17, p = 0.69; Figure 3.2d). Together, these results indicate that VTA 

KOR activation is an important modulator of aversion-induced reductions in 

nucleus accumbens dopamine signaling, but does not impact palatability.  

Blockade of VTA kappa opioid receptors prevents punishment learning.  

 KOR signaling has been implicated in modulating aversion, and while we 

found a pronounced regulation of dopamine signaling, we found no effect on 

hedonic processing. Based on this, we examined a role for VTA KOR signaling in 

punishment learning (Figure 3.3). In this design, all rats acquired operant 

responding for sucrose similarly. Following training rats were given the 

opportunity to respond for intraoral infusions of sucrose on each of two levers in 

daily 1 hour sessions from 5 days (Maintenance, Figure 3.3a). Following 

pretreatment with intra-VTA Nor-BNI or vehicle, sucrose seeking was punished 

by responses on one lever resulting in an intraoral quinine infusion while the 

other lever was inactive (Punishment, Figure 3.3b). On the following day rats 

were tested in extinction to assess avoidance learning following punishment 

(Test, Figure 3.3c). 
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Figure 3.2. VTA kappa opioid receptor blockade attenuates aversion-induced reductions in 
nucleus accumbens shell dopamine. (A) Average color plots from individual recordings 
showing time averaged changes in dopamine concentration in response to quinine. Voltage is 
shown on the y-axis, time is shown on the x-axis, and current changes are shown in color. 
Intra oral quinine infusion (6s) occurred at time 0 and is designated by the green bar. Each 
animal was pretreated with either vehicle (left) or Nor-BNI (right). (B) Aversive taste reactivity 
responses (mean +/- SEM) in response to quinine. Vehicle and Nor-BNI pretreated animals did 
not differ in aversive responses to quinine (p > 0.6). Changes in dopamine concentration 
determined via principal component analysis are plotted in (C) and quantified in (D) (n=10). 
(C) Time-averaged dopamine concentration changes during intraoral quinine delivery. (D) 
Average dopamine concentration at 3 time points: Pre Quinine (-10-0s), Quinine (0-10s), and 
Post Quinine (10-20s). The quinine-induced dopamine reduction was significantly greater 
during the Quinine and Post Quinine periods (p < 0.05) in vehicle treated subjects compared 
to Nor-BNI treated subjects. Data are presented as mean +/- SEM.  
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There were no between groups differences in sucrose consumption during 

Maintenance (p > 0.3). Following vehicle or Nor-BNI treatment, groups did not 

differ in quinine consumption during the Punishment phase (Figure 3.4a, p > 0.4). 

However, a significant interaction indicated that the ability to learn from the 

aversive experience depended on drug condition (group X session: F(2,20) = 

4.62, p < 0.05). The vehicle group had a significantly lower preference for the 

punished lever at Test compared to Maintenance (F(1,10) = 5.72, p < 0.05), 

Figure 3.3. Overview of behavioral design. Subjects were trained to lever press for 
intraoral delivery of sucrose (20%, 0.1ml/inf). Experimental phases are shown in (A), (B), 
and (C). All sessions were 1 hour in duration. (A) Maintenance. Subjects received 1 
session each day for 5 days during which responses on either lever yielded equivalent 
delivery of sucrose (20%, 0.1ml/inf). (B) Punishment. Delivery of pharmacological agents 
took place either 24 hours (Nor-BNI) or 15 minutes (quinpirole) prior to Punishment. All 
subjects received a punishment session during which responses on one lever resulted in 
delivery of intraoral quinine (0.001M, 0.1ml/inf), and the other lever was inactive. (C) 
Test. On the following day all subjects received a test session to assess punishment 
learning. During the Test session both levers were inactive. Intraoral infusions were 
always delivered in the absence of discrete cues. During Maintenance and Punishment, 
stimuli were delivered on independent VI45s schedules. 
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indicating effective punishment learning. However, preference for the punished 

lever did not differ between Test and Maintenance in Nor-BNI treated animals 

(F(1,10) = 1.56, p > 0.2) (Figure 3.4b). Together, these results show that quinine 

is an effective punisher of operant sucrose seeking, and that VTA KOR activation 

is required for punishment learning. 

 

 

 

Nucleus accumbens shell D2 receptors regulate punishment learning.  

 Our results suggest that KOR-mediated reductions in nucleus accumbens 

dopamine are important for aversive learning. If this reduction in dopamine 

signaling is an essential component of aversive learning, then it is likely acting 

through reduced occupancy of high affinity D2-like dopamine receptors in the 

Figure 3.4. VTA kappa opioid receptor blockade prevents punishment learning. 
(A) Sucrose consumption during Maintenance (p > 0.3) and quinine intake 
during Punishment did not differ between the groups (p > 0.4), indicating an 
equal opportunity to learn. (B) Subjects receiving intra-VTA vehicle 
microinfusions (n=6) significantly reduced their preference for the punished 
lever (p < 0.05) indicating effective punishment learning. Learning was 
prevented in subjects pretreated with intra-VTA Nor-BNI (n=6) (p > 0.2). 
Preference = responses on the punished lever / total responses. Data are 
presented as mean +/- SEM. 
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NAc (Dreyer et al, 2010; Porter-Stransky et al, 2013; Danjo et al, 2014). To test 

this, we microinfused the D2 receptor agonist, quinpirole, into the nucleus 

accumbens shell prior to Punishment in the same learning design. We 

hypothesized that if reduced D2 receptor occupancy is involved in aversive 

learning, then quinpirole would prevent the downstream effect of aversion-

induced dopamine reductions and interfere with punishment learning. Rats were 

again trained to respond for 20% sucrose, and following Maintenance were given 

a Punishment session. Fifteen minutes prior to the Punishment session rats 

received intra-nucleus accumbens shell microinjections of either vehicle or 

quinpirole. On the following day, rats received a Test session to assess learning. 

Groups did not differ in sucrose consumption during Maintenance (p > 0.5) or 

quinine consumption during Punishment (p > 0.4), suggesting that each group 

had the same opportunity to learn (Figure 3.5a). A repeated measures ANOVA 

revealed a significant interaction (Group x Session: F(2,24) = 3.71, p = 0.04) 

indicating that the effectiveness of the punishment training depended on drug 

treatment condition. Rats treated with vehicle showed punishment learning, as 

their preference for the punished lever was significantly lower at Test than during 

Maintenance (F(1,12) = 7.08, p = 0.02). However, rats that had received 

quinpirole did not show evidence of learning, as preference was unchanged from 

Maintenance to Test (Figure 3.5b, F(1,12) = 0.001, p > 0.9). These results 

indicate that preventing aversion-induced reductions in D2 dopamine receptor 

activation during the experience of an aversive stimulus impairs the ability to 

learn to avoid that aversive stimulus. 
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DISCUSSION  
 
 
 The present study assessed the contribution of VTA KORs to aversion-

induced reductions in nucleus accumbens dopamine signaling and aversion 

learning. Electrochemical monitoring has previously revealed that exposure to 

the aversive tastant, quinine, simultaneously induces negative affect and reduces 

NAc dopamine (Roitman et al, 2008; Wheeler et al, 2011; Twining et al, 2014). 

These experiments replicated the prior results and demonstrated that the 

aversion-induced reduction in dopamine signaling, but not the aversion-induced 

Figure 3.5. Activation of nucleus accumbens D2 receptors prevents 
punishment learning. (A) Sucrose consumption during Maintenance (p > 0.5) 
and quinine intake during Punishment did not differ between the groups (p > 
0.4). (B) Subjects receiving intra-NAc vehicle microinfusions (n=7) significantly 
reduced their preference for the punished lever (p < 0.05) indicating effective 
punishment learning. Learning was prevented in subjects pretreated with 
intra-NAc quinpirole (p > 0.9) (n=7). Preference = responses on the punished 
lever / total responses. Data are presented as mean +/- SEM. 
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negative affect, was attenuated by blockade of VTA KORs. To further test the 

behavioral relevance of this attenuated aversion-related signal, we adapted a 

punishment design (Marchant, Khuc, Pickens, Bonci, & Shaham, 2013) in which 

quinine was used to punish sucrose seeking in rats. We found that aversive 

conditioning with quinine caused rats to avoid the punished outcome during a 

subsequent test, and that this learning was dependent upon activation of VTA 

KORs. Finally, we tested the necessity of aversion-induced reductions in 

dopamine signaling in avoidance behavior by maintaining nucleus accumbens 

D2 receptor tone during punishment. We found that activation of D2 receptors 

during conditioning prevented avoidance learning caused by punishment. 

Together, these experiments demonstrate the necessity of activation of VTA 

KORs for aversion-induced reductions in dopamine that facilitate avoidance, and 

highlight the importance of nucleus accumbens D2 receptor signaling for 

aversive learning.  

 Since the observation that KOR activation is aversive in rodents and 

humans, the dynorphin/kappa opioid system has been extensively studied for its 

role in stress-induced and aversion-related behaviors (Pfeiffer et al, 1986; 

Shippenberg & Herz, 1986). Systemic administration of a kappa receptor agonist 

increases immobility in a forced swim test, as well as increases reward 

thresholds for intra-cranial self-stimulation, indicating that these agents produce 

depressive-like behavioral phenotypes and anhedonia (Carlezon et al, 2006). 

Systemic as well as local injections of KOR agonists in various brain areas, 

including the VTA and nucleus accumbens cause a conditioned place aversion 
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(Bals-Kubik, Ableitner, Herz, & Shippenberg, 1993; Zhang, Butelman, 

Schlussman, Ho, & Kreek, 2005). The depressive effects of KOR activation are 

blocked by treatment with a kappa receptor antagonist, and are lacking in mice 

possessing a nonfunctional prodynorphin gene or genetic KOR knockout 

(McLaughlin, Marton-Popovici, & Chavkin, 2003; Land et al, 2008). Furthermore, 

numerous studies have reported that, coincident with these depressive-like 

behaviors, KOR agonists also produce a reduction in nucleus accumbens 

dopamine signaling as measured by microdialysis and fast scan cyclic 

voltammetry (Carlezon et al, 2006; Britt, & McGehee, 2008; Ebner et al, 2010). 

Together, these studies indicate that activation of KOR receptors induces a 

negative affective state coincident with a decrease in nucleus accumbens 

dopamine. The link between KOR-mediated depressive-like behaviors and 

inhibition of NAc dopamine release has led to a recent focus on the role of VTA 

KORs in aversion.  

 KORs are well positioned to modulate motivated behavior, being 

expressed not only in the nucleus accumbens, but also both postsynaptically on 

dopaminergic neurons, as well as presynaptically on glutamatergic and 

GABAergic afferents in the VTA (Pickel et al, 1993; Margolis et al, 2005; Polter et 

al, 2014; Chefer et al, 2013). Activation of VTA KORs reduces the firing rates of 

VTA dopamine neurons (Muschamp et al, 2014), although this effect may not be 

uniform on mesolimbic and mesocortical projections (Ford et al, 2006; Margolis 

et al, 2006). While the behavioral significance of VTA KOR signaling has not 

received much attention, several recent studies have highlighted a key role for 
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this system in the regulation of aversion related behaviors. Recently it was shown 

that knockdown of KORs on dopamine transporter-expressing neurons reduced 

anxiety in an open field and light/dark box (Van’t Veer et al, 2013). Subsequently, 

Chefer et al (2013) demonstrated that mice lacking KORs on DAT-expressing 

neurons were unable to learn kappa agonist-induced conditioned place aversion. 

Furthermore, these mice also lacked the characteristic kappa agonist-induced 

decrease in nucleus accumbens dopamine as measured by microdialysis. In an 

elegant rescue experiment, intra-VTA viral-mediated expression of KORs 

rescued both the dopamine response to a kappa agonist as well as the aversive 

learning. Together, these reports highlight the importance of VTA KOR signaling 

in the regulation of aversion-related behaviors and nucleus accumbens 

dopamine. However, the interpretation of these studies is limited by the usage of 

pharmacological KOR agonists to produce aversion. While it is clear that KOR 

activation is sufficient to decrease nucleus accumbens dopamine and induce 

negative affect, it is unclear from these findings under what physiologically 

relevant conditions this occurs. The present study extends these findings by 

demonstrating that VTA KORs are activated by acute environmental aversive 

stimuli, and that this activation is required for aversion-induced reductions in 

dopamine and for proper avoidance learning caused by punishment.  

 Interestingly, Enrich et al (2015) recently reported that systemic kappa 

agonist induced conditioned place aversion requires activation of p38MAPK 

signaling in VTA dopamine neurons. While mice did not show kappa agonist 

induced conditioned place aversion when this signaling cascade was disrupted, 
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the ability of a kappa agonist to decrease experimenter evoked nucleus 

accumbens dopamine remained intact. This finding was interpreted as a 

demonstration that kappa agonist-induced reductions in dopamine do not 

mediate the aversive properties of KOR activation. However, it is important to 

note that the confirmation of the effect of KOR activation on dopamine is done in 

anesthetized animals, and shows that loss of p38 MAPK signaling does not 

alter KOR activation-induced blunting of stimulated dopamine release. While this 

result is convincing, the experiment does not examine the relevant dopamine 

signal for learning. For the interpretation of these findings, it is important to show 

that mice lacking p38MAPK signaling in VTA dopamine neurons still retain the 

prolonged reduction in dopamine (below baseline levels) that occurs during place 

conditioning. Additionally, in order to demonstrate that decreases in dopamine 

caused by KOR activation are not required for aversive learning, it is prudent to 

show, in an animal with intact KOR signaling cascades, that maintaining nucleus 

accumbens dopamine concentrations during conditioning does not impact 

learning. Importantly, in addition to disrupting aversive learning with a VTA KOR 

antagonist, the current report describes a similar disruption by maintaining 

dopamine tone with an intra-nucleus accumbens D2 receptor agonist. This 

finding suggests that, in our task, the KOR-mediated reduction in dopamine is 

required for aversive learning. Thus, it is likely that proper aversive learning 

requires both functional second messenger signaling within VTA dopamine 

neurons and a reduction in downstream dopamine signaling. Together, the two 

results are provocative, and indicate that future studies aimed at characterizing 
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the complex regulation of VTA dopamine neuron activity by aversive stimuli may 

yield therapeutically useful results. 

.  The observation that aversion-induced reductions in dopamine signaling 

are required for punishment learning is consistent with an evolving understanding 

of the role of different output pathways in the ventral striatum.  Studies using fast 

scan cyclic voltammetry, microdialysis, or computational modeling all estimate 

that basal nucleus accumbens dopamine concentration is in the low nanomolar 

range (Parsons & Justice, 1992; Shou Ferrario, Schultz, Robinson, & Kennedy, 

2006; Dreyer et al, 2010; Owesson-White et al, 2012; Dreyer & Hounsgaard, 

2013). Basal dopamine concentrations in this range would be too low to 

frequently activate low affinity D1 receptors, but would be expected to more 

consistently occupy the majority of high affinity D2 receptors in the ventral 

striatum (Dreyer et al, 2010). Since D1 and D2-expressing MSNs differ not just in 

the affinity of those receptors for dopamine, but also in their projection targets 

(Bocklisch et al, 2013; Kupchik et al, 2015), the nucleus accumbens output 

neurons are well positioned to be differentially sensitive to increases and 

decreases in dopamine. This notion of differential sensitivity to environmentally-

driven directional deviations in dopamine concentration is important for 

interpretation of the present findings (Figure 3.6). Rewarding stimuli and their 

predictors cause a transient increase in nucleus accumbens dopamine 

concentration that preferentially affects low affinity D1-like receptors, resulting in 

an increased sensitivity to glutamatergic drive to facilitate reward learning. In 
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contrast, aversive stimuli cause a reduction in naturally occurring dopamine 

concentration that is preferentially detected by D2 receptors.  

 

 

  

 

 

As the frequency of occupancy drops, the inhibitory tone on D2-expressing 

MSNs is reduced, facilitating avoidance learning. Importantly, even sub-second 

pauses in dopamine cell firing have been suggested to decrease D2 receptor 

occupancy (Dreyer et al, 2010). Our studies indicate that a single intraoral 

infusion of quinine produces a pronounced and sustained decrease in nucleus 

Figure 3.6. Model of striatal signaling during reward and punishment learning. 
Rewarding stimuli and their predictors elevate dopamine signaling which excites a 
low-affinity dopamine receptor-expressing output circuit, increasing the sensitivity 
of these projection neurons to glutamatergic afferents that promote incentivized 
responding. Alternatively, aversive stimuli promote VTA KOR activation, decreasing 
naturally-occurring dopamine signaling, and disinhibiting a different, aversion-
sensitive output circuit characterized by the expression of high affinity dopamine 
receptors. The activation of this pathway promotes avoidance learning. 
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accumbens dopamine, taking several seconds to resolve following stimulus offset 

(Roitman et al, 2008; Wheeler et al, 2011; Twining et al, 2014). These stimulus-

driven characteristics are important because the magnitude of bursts and pauses 

in dopaminergic neuronal activity, and corresponding increases or decreases in 

terminal dopamine concentration, determines the magnitude of the prediction 

error signal that guides learning (Bayer, Lau, & Glimcher, 2007).  

 As a test of the importance of aversion-induced reductions in dopamine, 

we demonstrated that learning could be prevented downstream by using a D2 

receptor agonist to maintain D2 receptor tone during punishment. According to 

our model, this treatment prevented punishment learning by reducing the 

capacity of D2-expressing MSNs to detect aversion-induced reductions in 

extracellular dopamine as they remained occupied by the pharmacological agent. 

In support of this model, the stimulation of D2-expressing MSNs has recently 

been linked to the experience of aversive stimuli (Xiu et al, 2014), behavioral 

suppression (Lobo et al, 2010), social avoidance (Francis et al, 2015), and the 

ability to learn about aversive outcomes (Porter-Stransky et al, 2013; Danjo et al, 

2014; Hikida et al, 2013). Together, these findings support the hypothesis that 

aversion-induced reductions in nucleus accumbens dopamine are necessary for 

punishment learning and highlight the importance of decreased dopamine to 

convey a critical learning signal. This view complies with clinical observations 

that patients with Parkinson’s disease are better at learning to avoid negative 

outcomes than they are at learning to approach rewards, and these deficits are 

attenuated by treatment with pro dopaminergic drugs (Frank et al, 2004). Further 
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study is necessary to determine whether reductions in nucleus accumbens 

dopamine are causally related to activation of D2-expressing MSNs, as well as 

provide significant insight into the molecular regulation and downstream targets 

of this pathway. This level of scrutiny could provide new avenues for therapeutic 

interventions for related disease states. 
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CHAPTER IV 
 

GENERAL DISCUSSION 
 
 
Summary 
 
 
 The studies presented in this thesis provide an evolving understanding of 

the importance of striatal dopamine signaling in aversion-driven behaviors. This 

thesis provides the novel demonstration that aversive drug cues that decrease 

nucleus accumbens dopamine and elicit a negative affective state cause drug 

seeking. Furthermore, the experiments described here characterize the effect of 

the aversive drug cue on the dopaminergic response to other drug associated 

stimuli, and on the activity of striatal neurons. Drug associated cues typically 

increase striatal dopamine levels. However, prior presentation of the aversive 

drug cue, and the induction of negative affect, eliminated this response. In this 

environment of decreased dopamine signaling caused by the presentation of the 

aversive drug cue, a subset of nucleus accumbens neurons progressively 

elevate their baseline firing rates. Importantly, this subset of neurons goes on to 

encode various aspects of reinstatement behavior. Together, these studies 

suggest that aversion-induced reductions in dopamine activate aversion-sensitive 

neurons in the nucleus accumbens that promote relapse behavior (Chapter II). 

 In addition to the characterization of dopamine signaling in the 

pathological state of drug addiction, experiments presented in this dissertation 

also scrutinize the significance of reductions in dopamine under more natural 

conditions. These studies characterize an opioid signaling mechanism by which 
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aversive stimuli cause reductions in nucleus accumbens dopamine signaling. 

While studied extensively for their role in aversion-related behaviors, particularly 

in the limbic system, VTA KORs are an important, but understudied population. 

Experiments presented here demonstrate that activation of VTA KORs is 

required for aversion-induced reductions in dopamine. Although pharmacological 

activation of these receptors has been shown to be aversive and decrease 

nucleus accumbens dopamine signaling (Chefer et al, 2013), the insight that this 

mechanism is engaged by environmental aversive events to cause reductions in 

dopamine is novel and highly significant. Perhaps more importantly, the 

experiments presented here show that activation of VTA KORs is required for 

proper avoidance learning caused by punishment; an effect that is attributed to 

the capacity of KOR activation to mediate aversion-induced reductions in 

dopamine. In support of this interpretation, data are presented that demonstrate 

that pharmacologically maintaining D2 receptor activation within the nucleus 

accumbens during the experience of the aversive stimulus also prevents 

avoidance learning caused by punishment. Together, these experiments 

demonstrate how aversive stimuli impinge on mesolimbic dopamine signaling, 

and describe a role for reductions in nucleus accumbens dopamine as an 

aversive learning signal that is propagated by changes in D2 receptor occupancy 

(Chapter III). It is the goal of the following sections to describe an evolving model 

of differential regulation of striatal output by bidirectional fluctuations in 

dopamine, and provide support for this model from both preclinical and clinical 

literature. Finally, this discussion will highlight the utility of this model in 
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explaining both healthy function and pathological dysfunction in avoidance 

behavior and learning, and for the examination of novel targets for the 

development of therapeutics.    

 
 
Dopaminergic Neurotransmission within the Nucleus Accumbens 
  
 
 The findings presented here that reductions in nucleus accumbens 

dopamine may contribute to relapse and are required for punishment learning, 

are consistent with contemporary views of how bidirectional fluctuations in 

dopamine may regulate different ventral striatal output pathways. Central to this 

view is the notion that basal concentrations of dopamine serve as a contrast 

point by which increases or decreases in concentration produce a distinct 

physiological response (Arbuthnott & Wickens, 2007). This is possible because 

the GABA-ergic medium spiny projection neurons of the nucleus accumbens are 

heterogeneous, and most MSNs express either Gs-coupled D1-like, or Gi-

coupled D2-like dopamine receptors (Gerfen et al, 1990). While both receptor 

subtypes have high- and low-affinity states, it is thought that striatal D1 receptors 

are typically in the low affinity state (~1M) while D2 receptors are in the high 

affinity state (~10nM) (Richfield, Penney, & Young, 1989; Rice & Cragg, 2008; 

Sulzer, Cragg, & Rice, 2016). Although this is difficult to verify, it is corroborated 

by observations of a high rate of tonic D2 receptor activity (Bertran-Gonzalez, et 

al, 2008; Svenningsson et al, 2000). Estimates of time-averaged naturally 

occurring nucleus accumbens dopamine concentration in an awake, resting rat 

using fast scan cyclic voltammetry are approximately 20-30nM (Owesson-White 
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et al, 2012), which are fairly consistent with estimates resulting from microdialysis 

measurements ranging from 5-18nM (Parsons and Justice, 1992; Shou et al, 

2006). These estimations are corroborated by computational models that 

estimate a moment-to-moment concentration of up to 67nM (Dreyer et al, 2010; 

Dreyer & Hounsgaard, 2013). Midbrain dopamine neurons are tonically active 

and have firing rates of 1-5Hz when not engaged in burst firing (Cooper, 2002). 

Given the restriction of the dopamine transporter, the main mechanism of uptake, 

to presynaptic sites, its low density of expression, and its relatively slow uptake 

kinetics, it is thought that the majority of the thousands of dopamine molecules 

released per single quantal release event spill over into the extra synaptic space 

(Rice & Cragg, 2008). Accounting for this, it has been suggested that a single 

quantal dopamine release event can influence the occupancy of D2 receptors at 

20-100 individual synapses (Arbuthnott & Wickens, 2007). Thus, the consistent 

presence of a low nanomolar concentration of dopamine would be expected to 

frequently occupy the majority of D2 receptors in the ventral striatum.  Indeed, 

modeling data indicates that tonic firing of midbrain dopamine neurons results in 

the occupancy of 75% of nucleus accumbens D2 receptors and only 3.5% of D1 

receptors, while even sub-second pauses in firing reduce D2 receptor occupancy 

(Dreyer et al, 2010). Together, these estimates describe a basal extracellular 

striatal environment with persistent occupancy of the majority of D2 receptors 

and very low occupancy of D1 receptors by dopamine.  

 An important outcome of dopamine receptor signaling is the indirect 

modulation of neuronal activity through alterations in the sensitivity to 
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glutamatergic drive. Given the opposing G-protein coupling of D1 and D2 

receptors on nucleus accumbens MSNs, dopamine receptor activation 

differentially alters neuronal excitability. D1 receptors are Gs/Golf coupled and 

activation of these receptors leads to activation intra cellular PKA. D1-mediated 

activation of PKA has been shown to phosphorylate AMPA and NMDA receptor 

subunits to promote surface expression of these receptors in the striatum 

(Snyder et al, 2000; Hallett, Spoelgen, Hyman, Standaert, & Dunah, 2006). As a 

result, D1 receptor activation in MSNs enhances synaptic currents evoked by 

NMDA receptor activation (Cepeda, Buchwald, & Levine, 1993). In addition, D1 

receptor-dependent PKA phosphorylation of GABAA receptors has been shown 

to reduce their function (Flores-Hernandez et al, 2000). D1 receptor activation 

also alters the activity of various voltage-gated ion channels that control 

membrane excitability. D1-induced activation of PKA phosphorylates L-type Ca2+ 

channels which augments the response of intrasomatic current injection 

(Surmeier et al, 1995; Hernández-López, Bargas, Surmeier, Reyes, & Galarraga, 

1997). D1 receptor stimulation also inhibits the activity of several voltage gated 

K+ channels (Surmeier et al, 2007). Together, these studies show that, through a 

combination of several mechanisms, activation of D1 receptors enhances 

membrane excitability and increases sensitivity to excitatory synaptic 

neurotransmission.  

 Contrary to the role of the D1 receptor, D2 receptors are Gi/o coupled and 

activation of these receptors negatively regulates intracellular PKA signaling. 

Activation of D2 receptors promotes trafficking of AMPA receptors out of the 



120 
 

synapse through dephosphorylation and reducedsAMPA and NMDA receptor 

mediated synaptic currents (Cepeda et al, 1993; Håkansson et al, 2006; Higley & 

Sabatini, 2010). D2 receptor activation also regulates a series of voltage gated 

ion channels to decrease membrane excitability. For example, D2 receptor 

stimulation inhibits depolarizing intracellular Ca2+ influx via PKA-dependent and 

independent mechanisms, and enhances hyperpolarizing K+ efflux (Greif, Lin, 

Liu, & Freedman, 1995; Higley & Sabatini, 2010; Surmeier, Carrillo-Reid, & 

Bargas, 2011), the net effect of which is to maintain the cell in a hyperpolarized 

state. These effects of D2 receptor stimulation are supported by the observation 

that D2-expressing MSNs show enhanced excitability in dopamine depleted mice 

(Peterson, Goldberg, & Surmeier, 2012). Importantly, PKA increases following 

D2 receptor inactivation occur rapidly (Yamaguchi et al, 2015), suggesting that 

activation of these G-protein coupled receptors may modulate excitability on a 

time scale suitable for responsivity to stimulus driven events. Together, these 

studies support the view that activation of D2 receptors in the striatum is 

inhibitory through reductions in membrane excitability and sensitivity to excitatory 

input.  

 
 
Model of Striatal Signaling 
  
 
 The differential effects of nucleus accumbens dopamine receptor 

activation, differences in projection targets of D1 and D2-expressing MSNs, and 

the likelihood of frequent D2 receptor occupancy by basal dopamine 

concentrations together describe differential striatal circuitry that is perfectly 
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adapted to be oppositely regulated by bidirectional fluctuations in dopamine 

concentration. The model presented throughout this thesis reflects this 

understanding to describe the importance of mesolimbic dopamine for approach 

and avoidance behaviors and learning (Figure 4.1).  

 

 

Figure 4.1. Evolving model of regulation of drug-seeking and learning by striatal circuits. 
Rewarding stimuli increase nucleus accumbens dopamine concentrations, which 
increases sensitivity of D1-expressing medium spiny neurons to excitatory drive. 
Activation of this pathway is critical for reward learning and drug-seeking as an 
appetitive behavior. Aversive stimuli decrease dopamine via intra-VTA activation of CRF 
and/or kappa opioid receptors. Aversion-induced reductions in dopamine are associated 
with the emergence of negative affect, and increase the sensitivity of D2-expressing 
medium spiny neurons to excitatory drive. Activation of this pathway promotes aversion 
learning and drug-seeking through negative reinforcement.   
 

 

Rewarding stimuli and reward-associated cues increase nucleus accumbens 

dopamine concentrations, which activates low affinity D1 receptors. Activation of 

these receptors increases membrane excitability and sensitivity to glutamatergic 

inputs that activate this pathway that promotes approach behaviors and reward 

learning. Conversely, aversive stimuli decrease nucleus accumbens dopamine 
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which reduces the frequency of D2 receptor occupancy. The loss of D2 receptor-

driven inhibitory tone increases membrane excitability and sensitivity to 

glutamatergic inputs on D2-expressing MSNs. Activation of this pathway 

promotes avoidance behavior and aversive learning.  

 Experiments from our lab have contributed to the understanding of specific 

aspects of this model. We have demonstrated that aversive stimuli impinge on 

mesolimbic dopamine signaling through activation of VTA CRF receptors, and 

activation of these receptors is required for aversion-induced reinstatement of 

cocaine seeking (Twining et al, 2014). In addition we have shown that an 

aversive, cocaine-predictive cue decreases dopamine, causes reinstatement of 

cocaine seeking, and activates a subpopulation of aversion-sensitive striatal 

neurons (Wheeler, Robble et al, 2015; Chapter II). According to our model, it is 

likely that these aversion-sensitive neurons are D2-expressing MSNs. 

Subsequent experiments scrutinized critical components of the model outside of 

the pathological state of drug addiction. Novel findings presented here show that, 

under normal conditions, aversive stimuli decrease nucleus accumbens 

dopamine signaling through activation of VTA KORs, and VTA KOR activation is 

required for avoidance learning caused by punishment. Importantly, we 

demonstrated that maintaining nucleus accumbens D2 receptor activation during 

the experience of the aversive stimulus also prevents punishment learning. This 

manipulation indicates that a decrease in D2 receptor occupancy, caused by 

aversion-induced reductions in dopamine, is required for avoidance learning 

caused by punishment (Chapter III). According to the model, intra nucleus 
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accumbens shell quinpirole prevents avoidance learning by maintaining inhibitory 

tone on D2-expressing MSNs. This last finding is significant, as the link between 

aversion-induced reductions in dopamine, activation of D2-expressing MSNs, 

and avoidance learning remains largely uncharacterized.  

 
 
Evidence that Reward-Evoked Dopaminergic Neurotransmission Leads to 
Activation of D1-Expressing Medium Spiny Neurons that Drive Reward-
Related Behaviors.    
  
 
 The recent advent of advanced techniques such as chemo- and 

optogenetics has allowed for significant advances to our understanding of how 

dopamine may modulate the activity of discrete striatal output pathways. 

Optogenetic activation of VTA dopamine neurons is sufficient to cause a 

conditioned place preference (Ilango et al, 2014), and supports self-stimulation 

behavior in rats (Witten et al, 2011). In addition, activation of VTA dopamine 

neurons during reward omission attenuates extinction learning (Steinberg et al, 

2013). These studies provide a causal link between elevated dopamine signaling 

and positive reinforcement and reward learning. Downstream, optogenetic 

activation of D1-expressing MSNs has been shown to be sufficient to cause 

conditioned place preference (Kravitz et al, 2012), while blockade of 

neurotransmitter release from D1-expressing MSNs prevents cue-mediated 

reward learning (Yawata et al, 2012). These studies indicate that activation of 

D1-expressing MSNs is both necessary and sufficient for reward learning. This 

pathway also has been examined for its importance in cocaine addiction. 

Blocking neurotransmission in D1-expressing MSNs demonstrated the 
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requirement of activation of this pathway for the acquisition and expression of 

cocaine conditioned place preference and cocaine-induced locomotor 

sensitization (Hikida, Kimura, Wada, Funabiki, & Nakanishi, 2010; Hikida et al, 

2013). The necessity of these neurons for locomotor sensitization to cocaine has 

been further clarified by work from Bocklisch et al (2013), indicating that this 

behavior is mediated specifically by the D1-expressing MSNs that project to the 

VTA and act to disinhibit VTA dopamine neurons in response to cocaine. The in 

vivo activity pattern of this specific pathway has also been associated with drug-

seeking behavior. In an elegant study, Calipari and colleagues (2016) recorded 

the activity of nucleus accumbens D1-expressing neurons during the acquisition, 

extinction, and reinstatement phases of cocaine conditioned place preference. 

They found that these neurons were activated by cocaine, and following 

conditioning these neurons exhibited their strongest activation immediately prior 

to entry into the paired side. These responses decreased with extinction, and 

were potentiated during cocaine-primed reinstatement. In accordance with other 

reports, pathway specific chemogenetic inhibition prevented acquisition and 

expression of cocaine conditioned place preference. Together, these studies 

support the widely accepted role for reward-induced increases in nucleus 

accumbens dopamine, and subsequent activation of D1-expressing MSNs in 

both reward seeking and learning. 
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Evidence that Reduced Dopamine Signaling Leads to Activation of D2-
Expressing Medium Spiny Neurons that Drive Aversion-Related Behaviors.   
  
 
 While the role of increased dopamine and D1-expressing MSN activation 

in reward has been extensively studied, the involvement of dopamine signaling in 

aversion has received less examination. With regards to the model presented 

here, the view that aversive stimuli, through reductions in dopamine, activate D2-

expressing MSNs to cause avoidance behaviors and avoidance learning is 

relatively novel and thus is less substantiated. However, support for this function 

of this pathway has begun to accumulate in recent years. As discussed 

previously and replicated by the experiments presented in earlier chapters, 

aversive stimuli and their predictors decrease nucleus accumbens dopamine as 

measured by fast scan cyclic voltammetry. Optogenetic inhibition of VTA 

dopamine neurons causes real time and conditioned place aversion, and this 

effect requires D2 receptor expression in the nucleus accumbens (Llango et al, 

2014; Danjo et al, 2014). In addition, optogenetic stimulation of VTA dopamine 

neurons, and maintaining D2 receptor tone pharmacologically both prevent 

changes in behavioral preference caused by reward omission (Porter-Stransky et 

al, 2013; Stopper, Maric, Montes, Wiedman, & Floresco, 2014). These 

observations indicate that reductions in dopamine are aversive, and that they 

facilitate learning through D2 receptor signaling.  

 Downstream, aversive stimuli have recently been shown to preferentially 

activate D2-expressing neurons in the nucleus accumbens (Xiu et al, 2014), and 

optogenetic activation of this pathway causes a conditioned place aversion 
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(Kravitz et al, 2012). These findings indicate that this pathway is sensitive to 

aversive stimuli and involved in avoidance learning. Indeed, using a cell type 

specific inducible tetanus toxin to block neurotransmission, Hikida et al (2010) 

demonstrated that mice lacking neurotransmission in D2-expressing MSNs are 

unable to learn to avoid a chamber previously paired with an electric foot shock. 

In an important study, this group also examined the importance of dopamine 

receptor signaling in this avoidance learning task. They demonstrated that 

unilateral induction of tetanus toxin in D2-expressing MSNs did not affect 

avoidance learning. However, site specific infusion of a D2 receptor agonist on 

the functionally intact side did prevent learning in these mice (Hikida et al, 2013). 

Importantly, this treatment did not disrupt immediate avoidance induced by the 

shock, indicating that the effect was specific to learning from the aversive 

experience. Furthermore, aversive conditioning in this task elevates PKA in D2-

expressing MSNs specifically, and the magnitude of this elevation predicts future 

avoidance of the shock paired chamber. This aversion-induced PKA elevation is 

required for learning, as inhibiting PKA on the intact side of mice with unilateral 

neurotransmission blockade in D2-expressing MSNs prevents learned avoidance 

(Yamaguchi et al, 2015). Given that foot shock has a largely inhibitory effect on 

midbrain dopamine neurons through increased GABA transmission (Tan et al, 

2012), these results suggest that aversion-induced reductions in D2 receptor 

occupancy are required for avoidance learning. This interpretation is further 

supported by the observation that D2 receptor agonists suppress cue-induced 

avoidance behavior, an effect that is only observed once striatal D2 receptor 
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occupancy reaches 70% (Wadenberg, Kapur, Soliman, Jones, & Vaccarino, 

2000). These effects are consistent with reports of the responsiveness of this 

neuronal pathway to other aversive events. Social defeat stress causes 

increased excitatory signaling in D2-expressing MSNs, and optogenetic 

activation of these neurons enhances social avoidance caused by defeat 

(Francis et al, 2015). Furthermore, models of neuropathic pain that involve nerve 

injury cause reductions in nucleus accumbens dopamine and enhanced 

excitability of D2-expressing MSNs. Optogenetic activation of this pathway 

enhances behavioral indices of neuropathic pain, while optogenetic inhibition has 

the opposite effect (Ren et al, 2016). Together, these reports support the model 

that, through reductions in striatal dopamine concentrations, a range of aversive 

stimuli activate D2-expressing MSNs to cause both avoidance behaviors and 

learning.  

 
 
Clinical Evidence for the Role of Dopamine Signaling in Reward and 
Aversion Learning 
  
 
 The studies reviewed here, as well as the data presented in this 

dissertation, characterize a striatal system that is a critical regulator of reward 

and avoidance learning through distinct dopaminergic output pathways. In light of 

the present finding that D2 receptor activation reduces punishment sensitivity 

(Chapter III), consideration of this pathway could shed light on shared anatomical 

dysfunction present in diverse behavioral disorders involving punishment 

insensitivity (Luman et al, 2008; Fairchild et al, 2009; de Ruiter et al, 2009). This 
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model may also provide a potential mechanism for symptoms observed in clinical 

conditions involving dopamine dysfunction. Patients with Parkinson’s disease are 

markedly better at learning to avoid negative outcomes than they are at learning 

to approach positive outcomes. Correspondingly, the pro-dopaminergic drug, L-

dopa, in combination with administration of a D2 receptor agonist interferes with 

avoidance learning and enhances reward learning in this patient population 

(Frank et al, 2004). Similar effects are also observed in patients with Parkinson’s 

disease following treatment with a D3 receptor agonist (Cools et al, 2006). The 

influence of reduced dopamine signaling on aversion sensitivity is not unique to 

individuals afflicted with Parkinson’s disease. Healthy individuals with low 

baseline dopamine synthesis capacity learn more effectively from unexpected 

punishment, compared to unexpected reward, and this is altered by treatment 

with a D2 receptor agonist (Cools et al, 2009). In addition, dietary depletion of 

dopamine precursors enhances punishment-based reversal learning in females 

(Robinson, Standing, DeVito, Cools, & Sahakian, 2010), a gender-specific effect 

that may involve the higher dopamine synthesis capacity of females (Laakso et 

al, 2002). 

  Reduced dopamine has also been shown to affect reward learning. In a 

probabilistic reward task, healthy individuals learn a response bias towards the 

option that yields the largest net reward. The development of this response bias, 

indicative of proper reward learning, is abolished in individuals treated with a low 

dose of the D2 receptor agonist, pramipexole (Pizzagalli et al, 2008). Low doses 

of D2 receptor agonists have been shown to decrease dopamine release, inhibit 
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midbrain dopamine neuron activity, and reduce blood flow to the nucleus 

accumbens (Piercey, Hoffmann, Smith, & Hyslop, 1996; Schmitz, Benoit‐Marand, 

Gonon, & Sulzer, 2003; Chen, Choi, Andersen, Rosen, & Jenkins, 2005). This 

response profile is attributed to selective activation of presynaptic D2 

autoreceptors (Samuels, Hou, Langley, Szabadi, & Bradshaw, 2006), which have 

a higher affinity for dopamine than the postsynaptic receptor (Cooper, Bloom, & 

Roth, 2003). Individuals treated with the dopamine agonist also reported 

increased negative affect, which aligns with our findings that negative affect and 

reductions in nucleus accumbens dopamine co-occur (Wheeler et al, 2011; 

Chapter II). Importantly, perturbations in reward learning in the probabilistic 

reward task caused by dopaminergic manipulations have also been shown in 

animals. Pramipexole abolishes normal response bias in rats, while treatment 

with the pro-dopaminergic drug, amphetamine, enhances reward learning (Der-

Avakian, D'souza, Pizzagalli, & Markou, 2013). Importantly, deficits in reward 

learning in the probabilistic reward task are also observed in patients with 

depression (Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008), a mood disorder 

which is associated with reductions in striatal dopamine (Lambert, Johansson, 

Ågren, & Friberg, 2000). The parsimonious explanation of these results is that a 

low dopamine state reduces the capacity of rewarding stimuli to activate D1-

expressing MSNs to promote reward learning. Taken together with the data 

presented here (Chapter III), clinical studies indicate that both normal and 

dysfunctional avoidance learning in humans are mediated by aversion-induced 

reductions in dopamine that signal through disinhibition of D2 receptor-
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expressing MSNs. Further study could provide significant insight into the 

molecular regulation and downstream targets of this pathway, and new avenues 

for therapeutic interventions for related disease states.  

 
 
Building a Conceptual Framework 
  
 
 A likely explanation of the preclinical and clinical results reviewed here is 

that basal nucleus accumbens dopamine concentration serves as a point of 

contrast that determines the signaling efficacy of stimulus-driven increases or 

decreases in concentration.  States of low basal nucleus accumbens dopamine 

concentration lower the threshold for aversion-induced reductions in dopamine 

necessary to engage an aversion-sensitive, D2 receptor-expressing MSNs output 

pathway that promotes avoidance learning. At the same time, a state of reduced 

dopamine increases the threshold for reward-induced elevations to activate a 

separate, D1-expressing MSN output pathway to promote reward learning. This 

enhanced sensitivity to aversive events, and blunted sensitivity to rewards 

explains why patients with Parkinson’s disease show both enhanced avoidance 

learning and deficits in reward learning, and why these same perturbations in 

learning are caused by dietary dopamine precursor depletions. Conversely, 

states of elevated basal dopamine have the opposite effect on sensitivity to 

rewards and aversive events, which is consistent with the observations that pro-

dopaminergic drugs enhance reward learning and reduce disease-related 

enhancements in avoidance learning.  
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 This view of the importance of striatal dopamine in guiding outcome-

sensitive behavior is closely aligned with the proposed involvement of dopamine 

in the economics of decision making. States of reduced dopamine are associated 

with decreased effort due to an increased sensitivity to effort-based costs (Niv et 

al, 2007). If costs are viewed as aversive, it follows that states of reduced 

dopamine would enhance cost sensitivity and blunt the effectiveness of rewards 

to motivate behavior. This may account for the decreased initiation of effort in 

patients with Parkinson’s disease (Chong et al, 2015). This view also accounts 

for why states of increased dopamine are associated with increased effort in 

humans and rodents (Wardle et al, 2011; Hamid et al, 2015), as the perceived 

aversive nature of vigorous behavioral output is reduced and reward value is 

simultaneously enhanced.  

 Implicit in this argument is the idea that states of reduced dopamine 

signaling and the emergence of a negative affective state are linked. Although it 

has not been demonstrated that a negative affective state requires a reduction in 

striatal dopamine, numerous observations support the idea that the two are 

related. The incidence of depression is higher in patients with Parkinson’s 

disease than it is in the general population (Reijnders et al, 2008), and drugs that 

decrease dopamine increase negative affect in healthy human subjects 

(Pizzagalli et al, 2007). Furthermore dopamine precursor depletion selectively 

enhances the affective component of pain (Tiemann, Heitmann, Schulz, 

Baumkötter, & Ploner, 2014). In other words, states of reduced dopamine make 

the subjective experience of pain more unpleasant, without altering the sensory 
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experience of pain intensity. Given that decreased dopamine signaling facilitates 

increased activation of D2-expressing MSNs to promote avoidance, it may be the 

case that induction of a negative affective state may be sufficient to promote 

avoidance behavior through negative reinforcement. In other words, according to 

the model presented here, negative affect may promote avoidance behavior in 

order to alleviate such an aversive state. The relationship between decreased 

dopamine, negative affect, and avoidance requires further examination, as it 

holds relevance for the treatment of numerous neuropsychiatric conditions.  

 
 
Relapse as an Avoidance Behavior 
 
 
 This mechanistic description of how aversive events and aversive states 

motivate avoidance behavior through negative reinforcement may have particular 

relevance for relapse in drug addiction. Drug addicts exhibit specific and 

persistent neuroadaptations, such as reduced striatal D2 receptor expression 

and increased dopamine transporter function (Staley et al, 1994; Malison et al, 

1998; Little et al, 1999; Volkow & Fowler, 2000), that indicate a basal striatal 

environment of decreased dopamine signaling.  Furthermore, numerous drug-

induced neuroadaptations have been characterized that contribute to a 

hyperactive response to stressful events (Koob & Le Moal, 2005; Volkow, Koob, 

McLellan, 2016). In human addicts, drug associated cues and stressful events 

evoke a negative affective craving state which predicts relapse (Paliwal et al, 

2008). In addition, stressful stimuli preferentially activate striatal regions in 

addicts compared to nondrug users (Sinha et al, 2005). Thus it is possible that 



133 
 

long term drug-induced neuroadaptations result in decreased dopamine and 

enhanced excitability of D2-expressing MSNs in the striatum. This state would 

lead to heightened sensitivity to aversive events, or cues that induce a negative 

affective state, as the low dopamine tone would reduce the threshold required for 

these stimuli to cause a response. Thus, through negative reinforcement, relapse 

can be seen as an avoidance behavior. In this case, the drug seeking act would 

be an attempt to alleviate an aversive event or cue-induced negative affective 

state. It is worth noting that the persistence of the observed neuroadaptations 

and hyper-activity to stress is not necessary for the view that relapse may be 

conceptualized as an avoidance behavior. Since aversive events promote 

avoidance in healthy individuals, it may simply be that drug addicts preferentially 

turn toward drug seeking as a coping mechanism simply because this behavior is 

part of a relatively thin behavioral repertoire. Recent reports from our lab 

(Twining et al, 2014; Chapter II) have demonstrated that aversive stimuli and 

aversive drug cues evoke a negative affective state, and cause drug seeking in 

an environment of persistent reductions in dopamine. Furthermore, aversive drug 

cues activate a subpopulation of striatal neurons, which, according to the model 

presented here, are likely to be D2-expressing MSNs that promote avoidance. 

Finally, more recently collected data from our lab (that are logical extensions of 

the data presented here) indicate that selective reductions in dopamine increase 

both drug taking and drug seeking. Thus, our data are consistent with the 

classical interpretation (Soloman & Corbit, 1974) that relapse is the manifestation 

of avoidance caused by a negative affective state. Future studies are required to 
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determine if decreased dopamine is the mechanism by which aversive stimuli 

activate D2-expressing MSNs, and if the activation of this pathway is required for 

aversion-induced drug seeking.  

 
 
Conclusions 
  
 
 The experiments presented in this dissertation describe an emerging view 

that ventral striatal dopamine signaling is a critical regulator of affective state and 

motivated behavior. The mesolimbic dopamine system has been extensively 

studied for its role in reward processing and learning, while the capacity of this 

system to process aversive events and guide subsequent learning has remained 

relatively uncharacterized. The results of the present studies significantly 

contribute to the view that the ventral striatum is well positioned to modulate both 

approach and avoidance behavior based on stimulus-driven fluctuations in 

dopamine concentration, and the effect of those changing dopamine levels on 

distinct and opposing output pathways. The view that basal dopamine levels are 

critical in determining the effectiveness of reward and aversion-induced rapid 

increases and decreases in concentration has important implications for both 

motivation and learning. By determining the threshold required for these stimuli to 

engage their respective output pathways, striatal dopamine concentrations 

appear to have the capacity to bias behavior in either direction. Furthermore, this 

system may represent a common pathway capable of explaining aberrant reward 

and aversion sensitivity and learning in a wide array of behavioral and 

neurodegenerative disorders. Further, examination of this pathway may be of 
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importance for fully characterizing and treating drug relapse. Classical views of 

drug addiction, corroborated by reports from human addicts, have focused on the 

role of negative reinforcement as a motivator of drug taking and seeking, but 

neurological evidence of this has remained elusive. The data presented here 

indicate that aversion-induced reductions in dopamine and the related negative 

affective state are important motivators of avoidance behavior through activation 

of an aversion-sensitive output pathway. Although evidence is mounting in 

support of this view, the full understanding of the bidirectional modulation of 

motivation and learning by striatal dopamine requires further study. With the 

advent of advanced techniques in neuroscience, future experiments will be able 

to further characterize the capacity of a changing striatal dopaminergic 

environment to modulate downstream signaling. Integrating these tools with 

sensitive behavioral measures should also add clarity to the relationship between 

reductions in dopamine and the emergence of a negative affective state; and 

whether negative affect can motivate avoidance though negative reinforcement. 

Finally, it will be important to determine the necessity of activation of the 

aversion-sensitive striatal output pathway to control relapse behavior specifically, 

and avoidance behavior generally, as well as characterize the relevant inputs 

that drive this pathway in the face of decreased dopamine. The characterization 

of this dopaminergic circuit is an exciting prospect as it may explain dysregulation 

in motivation and learning across numerous disease states, and offer novel and 

precise targets for the development of new therapeutics. 
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