27 research outputs found

    A Geometrical Characterization of the Twin Paradox and its Variants

    Full text link
    The aim of this paper is to provide a logic-based conceptual analysis of the twin paradox (TwP) theorem within a first-order logic framework. A geometrical characterization of TwP and its variants is given. It is shown that TwP is not logically equivalent to the assumption of the slowing down of moving clocks, and the lack of TwP is not logically equivalent to the Newtonian assumption of absolute time. The logical connection between TwP and a symmetry axiom of special relativity is also studied.Comment: 22 pages, 3 figure

    Macromolecular theory of solvation and structure in mixtures of colloids and polymers

    Full text link
    The structural and thermodynamic properties of mixtures of colloidal spheres and non-adsorbing polymer chains are studied within a novel general two-component macromolecular liquid state approach applicable for all size asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concentrated, are presented and compared to field theory and models which replace polymer coils with spheres. Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling laws where available, important differences from ``effective sphere'' approaches are found for large polymer sizes or semi-dilute concentrations.Comment: 23 pages, 10 figure

    True substrates: The exceptional resolution and unexceptional preservation of deep time snapshots on bedding surfaces

    Get PDF
    Abstract: Rock outcrops of the sedimentary–stratigraphic record often reveal bedding planes that can be considered to be true substrates: preserved surfaces that demonstrably existed at the sediment–water or sediment–air interface at the time of deposition. These surfaces have high value as repositories of palaeoenvironmental information, revealing fossilized snapshots of microscale topography from deep time. Some true substrates are notable for their sedimentary, palaeontological and ichnological signatures that provide windows into key intervals of Earth history, but countless others occur routinely throughout the sedimentary–stratigraphic record. They frequently reveal patterns that are strikingly familiar from modern sedimentary environments, such as ripple marks, animal trackways, raindrop impressions or mudcracks: all phenomena that are apparently ephemeral in modern settings, and which form on recognizably human timescales. This paper sets out to explain why these short‐term, transient, small‐scale features are counter‐intuitively abundant within a 3.8 billion year‐long sedimentary–stratigraphic record that is known to be inherently time‐incomplete. True substrates are fundamentally related to a state of stasis in ancient sedimentation systems, and distinguishable from other types of bedding surfaces that formed from a dominance of states of deposition or erosion. Stasis is shown to play a key role in both their formation and preservation, rendering them faithful and valuable archives of palaeoenvironmental and temporal information. Further, the intersection between the time–length scale of their formative processes and outcrop expressions can be used to explain why they are so frequently encountered in outcrop investigations. Explaining true substrates as inevitable and unexceptional by‐products of the accrual of the sedimentary–stratigraphic record should shift perspectives on what can be understood about Earth history from field studies of the sedimentary–stratigraphic record. They should be recognized as providing high‐definition information about the mundane day to day operation of ancient environments, and critically assuage the argument that the incomplete sedimentary–stratigraphic record is unrepresentative of the geological past

    Acoustic analysis and playback experiments do not support the taxonomic revision of the Central and Western Canary Islands subspecies of the Eurasian Stone-curlew Burhinus oedicnemus distinctus

    No full text
    Capsule: Acoustic analysis does not support the elevation of B. o. distinctus to full species. Aims:To verify whether the vocal repertoires of B. o. oedicnemus and B. o. distinctus show biologically significant quantitative and qualitative differences. Methods: Integration of acoustic analysis of some of the most frequently uttered call types recorded in Italy and in Canary Islands with playback experiments. Results: The vocal repertoires of the individuals belonging to the two subspecies were rather similar, but the quantitative analysis of acoustic parameters evidenced some differences between the considered populations. In particular, the three most used call types showed higher frequency and faster utterance rhythm for B. o. distinctus than for B. o. oedicnemus. Playback experiments indicated that individuals from the nominate subspecies responded in the same way to the playback of calls of individuals belonging to both subspecies. Conclusion: Acoustic analysis supports the distinctiveness of Stone-curlew populations from Central and Western Canary Islands, thus confirming the available morphological and genetic data. These results, however, do not suggest the elevation of B. o. distinctus to full species
    corecore