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Two-dimensional R-matrix propagation

The R-matrix method has proved to be a remarkably stable, robust and efficient technique for solving

the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules.

During the last thirty-four years a series of related R-matrix program packages have been published pe-

riodically in CPC. These packages are primarily concerned with low-energy scattering where the incident

energy is insufficient to ionise the target. In this paper we describe 2DRMP, a suite of two-dimensional

R-matrix propagation programs aimed at creating virtual experiments on high performance and grid ar-

chitectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies.

Program summary

Program title: 2DRMP

Catalogue identifier: AEEA_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEEA_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 196717

No. of bytes in distributed program, including test data, etc.: 3819727

Distribution format: tar.gz

Programming language: Fortran 95, MPI

Computer: Tested on CRAY XT4 [1]; IBM eServer 575 [2]; Itanium II cluster [3]

Operating system: Tested on UNICOS/lc [1]; IBM AIX [2]; Red Hat Linux Enterprise AS [3]

Has the code been vectorised or parallelised?: Yes. 16 cores were used for small test run

Classification: 2.4

External routines: BLAS, LAPACK, PBLAS, ScaLAPACK

Subprograms used: ADAZ_v1_1

Nature of problem: 2DRMP is a suite of programs aimed at creating virtual experiments on high perfor-

mance architectures to enable the study of electron scattering from H-like atoms and ions at intermediate

energies.

Solution method: Two-dimensional R-matrix propagation theory. The (r1, r2) space of the internal region is

subdivided into a number of subregions. Local R-matrices are constructed within each subregion and used

to propagate a global R-matrix, ℜ, across the internal region. On the boundary of the internal region ℜ is

transformed onto the IERM target state basis. Thus, the two-dimensional R-matrix propagation technique

transforms an intractable problem into a series of tractable problems enabling the internal region to be

extended far beyond that which is possible with the standard one-sector codes. A distinctive feature of

the method is that both electrons are treated identically and the R-matrix basis states are constructed to

allow for both electrons to be in the continuum. The subregion size is flexible and can be adjusted to

accommodate the number of cores available.

Restrictions: The implementation is currently restricted to electron scattering from H-like atoms and ions.

DOI of original article: 10.1016/j.cpc.2009.07.017.
I This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/

science/journal/00104655).
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Additional comments: The programs have been designed to operate on serial computers and to exploit the

distributed memory parallelism found on tightly coupled high performance clusters and supercomputers.

2DRMP has been systematically and comprehensively documented using ROBODoc [4] which is an API

documentation tool that works by extracting specially formatted headers from the program source code

and writing them to documentation files.

Running time: The wall clock running time for the small test run using 16 cores and performed on [3] is

as follows: bp (7 s); rint2 (34 s); newrd (32 s); diag (21 s); amps (11 s); prop (24 s).

References:
[1] HECToR, CRAY XT4 running UNICOS/lc, http://www.hector.ac.uk/, accessed 22 July, 2009.

[2] HPCx, IBM eServer 575 running IBM AIX, http://www.hpcx.ac.uk/, accessed 22 July, 2009.

[3] HP Cluster, Itanium II cluster running Red Hat Linux Enterprise AS, Queen s University Belfast,

http://www.qub.ac.uk/directorates/InformationServices/Research/HighPerformanceComputing/Services/

Hardware/HPResearch/, accessed 22 July, 2009.

[4] Automating Software Documentation with ROBODoc, http://www.xs4all.nl/~rfsber/Robo/, accessed 22

July, 2009.

 2009 Elsevier B.V. All rights reserved.

1. Introduction

R-matrix theory was first introduced in nuclear physics by Wigner [1,2]. Around the early 1970s it was realised that this approach

could also be used in atomic and molecular physics [3]. Since then the R-matrix method has proved to be a remarkably stable, robust and

efficient technique for solving the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules

[4–6].

During the past thirty-five years a series of related R-matrix program packages have been published periodically in Computer Physics

Communications (CPC). Building on the important foundational work of Allison [7], Burke [8], Hibbert [9] and Robb [10,11], Berrington et

al. published in 1974 [12] and again in 1978 [13] an influential general program based on the non-relativistic Hamiltonian for calculating

electron–atom and electron–ion cross sections as well as general atomic and photoionization cross sections and polarizabilities. This

package was extended in 1982 by Scott and Taylor [14] to exploit model potentials and to allow for relativistic effects by including terms

from the Breit–Pauli Hamiltonian. A non-exchange version of the non-relativistic package was subsequently published in 1992 by Burke,

Burke and Scott [15]. In 1995, an updated version of the general package, to calculate electron–atom and electron–ion collision processes,

with options to calculate radiative data and photoionization in either LS-coupling or in an intermediate-coupling scheme, was published

by Berrington, Eissner and Norrington [16]. This program was based on two earlier CPC packages [13,14] and included extensions by the

Opacity Project [17,18] and the Iron Project team [19].1 More recently, in 2006, Zatsarinny [20] published a novel implementation of the

R-matrix method with two significant innovations compared to the existing codes: non-orthogonal orbitals are used to represent both the

bound and continuum one-electron orbitals; and a set of B-splines are used to define the R-matrix basis functions.

The aforementioned packages are primarily concerned with low-energy scattering where the incident energy is insufficient to ionize the

target. At intermediate energies, from close to the ionization threshold to several times this energy, modelling of the scattering processes

is difficult because account must be taken of the coupling amongst the infinite number of continuum states of the ionized target and the

infinite number of target bound states lying below the ionization threshold. Two R-matrix approaches have been developed to represent

this coupling with acceptable accuracy. The first is the R-matrix with Pseudostates Method (RMPS) [21–24]. Here, the standard R-matrix

target eigenstate expansion is augmented by the inclusion of additional quadratically integrable pseudostates. These pseudostates are

constructed by including additional contracted pseudo-orbitals in the target orbital basis. In this way the exact spectrum of the target

is replaced by an approximate discrete spectrum. The advantage of the RMPS approach is that it is easy to implement in the standard

R-matrix codes referenced in the paragraph above and is therefore readily applicable to general atomic or ionic targets. The second

approach is the Intermediate Energy R-matrix Method (IERM) [25]. To date this method has only been implemented for one-electron

targets [26] where the distinctive feature is that both electrons are treated identically and the R-matrix basis states are constructed to

allow for both electrons to be in the continuum. The IERM approach results in a more densely packed pseudostate basis, with respect to

the target state energy levels, than the RPMS basis. Accordingly it is more appropriate than RMPS in the study of scattering processes such

as electron impact ionization close to the ionization threshold [27].

R-matrix theory is based around dividing the configuration space describing the collision process into two regions by a sphere of

radius r = a, where a is chosen so that the charge distribution of the target atom or ion is contained within the sphere. Assuming a

fixed range of incident scattering energies, it can be shown that number of IERM basis functions required within the internal region is

roughly proportional to a2 [28]. Accordingly, as a increases to allow the study of excitation to higher lying, and more diffuse, target states

the calculation can rapidly become computationally intractable. Therefore an extension of IERM has been developed in which the (r1, r2)

space of the internal region is subdivided into a number of subregions [25,29]. Local R-matrices are constructed within each subregion

and used to propagate a global R-matrix, ℜ, across the internal region. On the boundary between the internal and external regions ℜ
is transformed onto the IERM target state basis. Thus, the two-dimensional R-matrix propagation technique transforms an intractable

problem into a series of tractable problems enabling the internal region to be extended far beyond that which is possible with the

standard one-sector codes: for example, in [30] the internal region is 600 a.u.

This paper describes 2DRMP, a suite of two-dimensional R-matrix propagation programs aimed at creating virtual experiments on high

performance [31–35] and grid architectures [36,37] to enable the study of electron scattering from H-like atoms and ions at intermediate

1 Unpublished variants of these codes are also available from http://amdpp.phys.strath.ac.uk/tamoc/code.html (accessed 22 July, 2009).
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Fig. 1. Subdivision of the (r1, r2) plane within the internal region into a set of connected subregions I i, j .

energies [27,30].2 Two-dimensional R-matrix propagation theory is described in the following section, an outline of the 2DRMP software

system is provided in Section 3, installation notes are given in Section 4 and concluding remarks are made in Section 5.

2. Two-dimensional R-matrix propagation theory

2.1. The R-matrix basis within a subregion

The 2-D R-matrix propagator method proceeds by subdividing the (r1, r2) plane within the R-matrix inner-region into a set of connected

subregions, I i, j , as shown in Fig. 1.

Within each subregion the wavefunction describing the two-electron system is expanded in an orthonormal set of energy independent

basis functions,

ΨE(q1,q2) =
∞∑

k=1

AEkψk(q1,q2), (1)

where E is total energy of the system and qi represents the space, ri , and spin coordinates, σi , of electron i. The basis functions, ψk(q1,q2),

are eigenfunctions of the non-relativistic Schrödinger equation,

Hψk(q1,q2) = Ekψk(q1,q2), (2)

where the Hamiltonian H is given in atomic units by,

(
−

1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
−

Z

r2
+

1

r12

)
, (3)

Z being the nuclear charge of the atom. Denoting the total orbital and spin angular momenta and their z components by L, S , ML and

MS respectively, we note that since the Hamiltonian operator commutes with L2 , Lz , S
2 , Sz and the parity Π , the basis functions are

simultaneously eigenfunctions of these operators, i.e.

〈
ψ

LML SMSΠ

k
(q1,q2)

∣∣H
∣∣ψ L′M ′

L S
′M ′

SΠ
′

k′ (q1,q2)
〉
= Ekδkk′δLL′δMLM

′
L
δS S ′δMSM

′
S
δΠΠ ′ . (4)

Since the Hamiltonian is independent of electron spin each basis function is a product of a spatial and a spin function as follows:

ψ
LML SMSΠ

k
(q1,q2) = θ

LML SΠ
k

(r1, r2)χ
SMS (σ1,σ2). (5)

The spin function, χ SMS (σ1,σ2), is defined in the normal way3 and is antisymmetric when S = 0 and symmetric when S = 1. Eq. (4)

therefore becomes,

〈
θ
LML SΠ
k

(r1, r2)
∣∣H

∣∣θ L′M ′
L S

′Π ′

k′ (r1, r2)
〉
= Ekδkk′δLL′δMLM

′
L
δS S ′δΠΠ ′ . (7)

2 This code is complementary to one developed by Dunseath et al. [38].
3

χ0,0(σ1,σ2) =
1

√
2

(
α(1)β(2) − β(1)α(2)

)
, (6a)

χ1,1(σ1,σ2) = α(1)β(2), (6b)

χ1,0(σ1,σ2) =
1

√
2

(
α(1)β(2) + β(1)α(2)

)
, (6c)

χ1,−1(σ1,σ2) = β(1)β(2), (6d)

with α and β being the single electron spin functions [39].
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For notational convenience we now drop the superscripts L, ML , S and Π . The spatial basis functions, θk(r1, r2), are expanded in each

subregion in terms of a set of orthonormal two-electron functions, φn1l1n2l2 (r1, r2), as follows:

θk(r1, r2) =
∑

n1l1n2l2

φn1l1n2l2(r1, r2)αn1l1n2l2,k. (8)

The precise form of Eq. (8) depends on whether the subregion under consideration is diagonal, I i,i or off-diagonal, I i, j , i 6= j.

In a diagonal subregion the Pauli Exclusion Principle requires that the basis wavefunctions, ψk(q1,q2), must be antisymmetric. From

Eqs. (5)–(6d) this is achieved when each of the two-electron functions, φn1l1n2l2 (r1, r2), is symmetric when S = 0 and antisymmetric when

S = 1. Accordingly, the two-electron functions, φn1l1n2l2 (r1, r2), are given by,

φnlnl(r1, r2) = νnl(r1)r
−1
1 νnl(r2)r

−1
2 YllLML

( r̂1, r̂2), (9)

when the two electrons are equivalent (n1l1 = n2l2), with the proviso, imposed by the Pauli Exclusion Principle, that L + S is even, and

φn1l1n2l2(r1, r2) =
1

√
2

(
1+ (−1)S P12

){
νn1l1(r1)r

−1
1 νn2l2(r2)r

−1
2 Yl1l2LML

( r̂1, r̂2)
}
, (10)

when the two electrons are non-equivalent (n1l1 6= n2l2), P12 being the spatial exchange operator. For non-equivalent electrons we note

that,

φn1l1n2l2(r1, r2) = ±φn2l2n1l1(r1, r2). (11)

Therefore, to avoid linear independence problems, the sum over n1l1 and n2l2 in Eq. (8) only includes terms where n1l1 > n2l2 .
4

In an off-diagonal subregion each electron is localised to a different region of space and the Pauli Principle does not apply. Accordingly,

the two-electron functions, φn1l1n2l2 (r1, r2), are given by,

φn1l1n2l2(r1, r2) = νn1l1(r1)r
−1
1 νn2l2(r2)r

−1
2 Yl1l2LML

( r̂1, r̂2), (12)

with no restriction in the sum over n1l1 and n2l2 in Eq. (8).

The coupled angular functions, Yl1l2LML
( r̂1, r̂2), are defined as,

Yl1l2LML
( r̂1, r̂2) =

∑

m1m2

C(l1l2L;m1m2ML)Y l1m1
( r̂1)Y l2m2

( r̂2), (13)

where, Y lm( r̂ ), are spherical harmonics and, C(l1l2L;m1m2ML), are Clebsch–Gordan coefficients as defined by Rose [40]. The radial func-

tions, νnl(r), are normalised eigenfunctions of the Schrödinger equation,

(
d2

dr2
−

l(l + 1)

r2
+

2Z

r
+ k2nl

)
νnl(r) = 0, (14)

solved subject to the R-matrix boundary conditions,

νnl(0) = 0, (15a)

a1

νnl(a1)
.
dνnl

dr

∣∣∣∣
r=a1

= 0, (15b)

when 0 6 r 6 a1 and

ai

νnl(ai)
.
dνnl

dr

∣∣∣∣
r=ai

= 0, (16a)

ai+1

νnl(ai+1)
.
dνnl

dr

∣∣∣∣
r=ai+1

= 0, (16b)

when ai 6 r 6 ai+1 , i > 1. These boundary conditions ensure that the Hamiltonian operator is Hermitian within the subregion.

2.1.1. Hamiltonian matrix elements within a subregion

The expansion coefficients in Eq. (8), αn1l1n2l2,k , are the normalised5 eigenvectors obtained when the real symmetric matrix,

〈
φn1l1n2l2(r1, r2)

∣∣H
∣∣φn3l3n4l4(r1, r2)

〉
, (17)

is diagonalised: this ensures that Eq. (7) is satisfied. Again the form of this equation depends on whether the subregion is a diagonal or

an off-diagonal subregion.

In a diagonal subregion there are four cases to consider: n1l1 6= n2l2 , n3l3 6= n4l4; n1l1 = n2l2 , n3l3 = n4l4; n1l1 = n2l2 , n3l3 6= n4l4; and

n1l1 6= n2l2 , n3l3 = n4l4 . These are given respectively as follows:

4 I.e. l1 > l2 with the proviso that if l1 > l2 there are no restrictions on n1 and n2 but if l1 = l2 then n1 > n2 when L + S is odd and n1 > n2 when L + S is even.
5 Normalised such that the sum of the squares of the moduli of the components are unity.
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Fig. 2. The four edges, 1, 2, 3 and 4, of a general subregion.

n1l1 6= n2l2,n3l3 6= n4l4:
〈
φn1l1n2l2(r1, r2)

∣∣H
∣∣φn3l3n4l4(r1, r2)

〉

=
1

2
δl1l3δl2l4δn1n3δn2n4

(
k2n3l3 + k2n4l4

)
+

∑

λ

fλ(l1l2l3l4; L)RD
λ (n1l1n2l2n3l3n4l4)

+ (−1)L+S+l1+l2

[
1

2
δl1l4δl2l3δn1n4δn2n3

(
k2n3l3 + k2n4l4

)
+

∑

λ

fλ(l1l2l4l3; L)RD
λ (n1l1n2l2n4l4n3l3)

]
. (18)

n1l1 = n2l2,n3l3 = n4l4:
〈
φnlnl(r1, r2)

∣∣H
∣∣φnlnl(r1, r2)

〉
= k2nl +

∑

λ

fλ(llll; L)RD
λ (nlnlnlnl). (19)

n1l1 = n2l2,n3l3 6= n4l4:

〈
φnlnl(r1, r2)

∣∣H
∣∣φn3l3n4l4(r1, r2)

〉
=

√
2

[
δll3δll4δnn3δnn4k

2
nl +

∑

λ

fλ(lll3l4; L)RD
λ (nlnln3l3n4l4)

]
. (20)

n1l1 6= n2l2,n3l3 = n4l4:

〈
φn1l1n2l2(r1, r2)

∣∣H
∣∣φnlnl(r1, r2)

〉
=

√
2

[
δll1δll2δnn1δnn2k

2
nl +

∑

λ

fλ(l1l2ll; L)RD
λ (n1l1n2l2nlnl)

]
. (21)

In an off-diagonal subregion,

〈
φn1l1n2l2(r1, r2)

∣∣H
∣∣φn3l3n4l4(r1, r2)

〉
=

1

2
δl1l3δl2l4δn1n3δn2n4

(
k2n3l3 + k2n4l4

)

+
∑

λ

fλ(l1l2l3l4; L)ROD
λ (n1l1n2l2n3l3n4l4). (22)

In Eqs. (18)–(22) the angular integrals, fλ(l1l2l3l4; L), are given by,

fλ(l1l2l3l4; L) = (−1)l1+l3+L
[
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

]1/2

× (2λ + 1)−1C(l1l3λ;000)C(l2l4λ;000)W (l1l2l3l4; Lλ), (23)

where, W (l1l2l3l4; Lλ), is a Racah coefficient as defined by Rose [40]. The two-dimensional radial integrals found on a diagonal subregion,

RD
λ (n1l1n2l2n3l4n3l4), are given by,

RD
λ (n1l1n2l2n3l4n3l4) =

ai+1∫

ai

ai+1∫

ai

νn1l1(r1)νn2l2(r2)
rλ<

rλ+1
>

νn3l3(r1)νn4l4(r2)dr1 dr2, (24)

whereas those found on an off-diagonal subregion, RO D
λ (n1l1n2l2n3l4n3l4), are given by,

ROD
λ (n1l1n2l2n3l4n3l4) =

ai+1∫

ai

νn1l1(r1)νn3l3(r1)

rλ+1
1

dr1

a j+1∫

a j

νn2l2(r2)νn4l4(r2)r
λ
2 dr2. (25)

2.2. Local R-matrices within a subregion

Each general subregion in Fig. 1 has four edges labelled 1, 2, 3 and 4 as shown in Fig. 2. Within each general subregion the wavefunction

on one edge is related to the first derivative of the wavefunction on all four edges by local R-matrices. In this section we derive these

relationships.

In a diagonal subregion Eq. (8) can be expressed as,
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θk(r1, r2) =

[(
lmax∑

l1=0

∞∑

n1=l1+1

l1−1∑

l2=0

∞∑

n2=l2+1

+
lmax∑

l1=0

∞∑

n1=l1+1

l1∑

l2=l1

n1−1∑

n2=l2+1

)

× νn1l1(r1)r
−1
1 νn2l2(r2)r

−1
2 Yl1l2LML

( r̂1, r̂2)
αn1l1n2l2,k√

2

]
(26a)

+

[(
lmax∑

l1=0

∞∑

n1=l1+1

l1−1∑

l2=0

∞∑

n2=l2+1

+
lmax∑

l1=0

∞∑

n1=l1+1

l1∑

l2=l1

n1−1∑

n2=l2+1

)

× νn2l2(r1)r
−1
1 νn1l1(r2)r

−1
2 Yl2l1LML

( r̂1, r̂2)
(−1)l1+l2+L+Sαn1l1n2l2,k√

2

]
(26b)

+
lmax∑

l1=0

∞∑

n1=l1+1

νn1l1(r1)r
−1
1 νn1l1(r2)r

−1
2 Yl1l1LML

( r̂1, r̂2)αn1l1n1l1,k. (26c)

By relabelling n1l1 ↔ n2l2 in Eq. (26b), Eq. (8) becomes,

θk(r1, r2) =
lmax∑

l1=0

∞∑

n1=l1+1

lmax∑

l2=0

∞∑

n2=l2+1

νn1l1(r1)r
−1
1 νn2l2(r2)r

−1
2 Yl1l2LML

( r̂1, r̂2)an1l1n2l2,k, (27)

where,

an1l1n2l2,k =
1

√
2
αn1l1n2l2,k n1l1 > n2l2, (28a)

=
1

√
2
(−1)L+S+l1+l2αn2l2n1l1,k n2l2 > n1l1, (28b)

anlnl,k = αnlnl,k mod(L + S,2) = 0. (28c)

In an off-diagonal subregion, Eq. (8) also takes the form,

θk(r1, r2) =
lmax∑

l1=0

∞∑

n1=l1+1

lmax∑

l2=0

∞∑

n2=l2+1

νn1l1(r1)r
−1
1 νn2l2(r2)r

−1
2 Yl1l2LML

( r̂1, r̂2)an1l1n2l2,k, (29)

but here,

an1l1n2l2,k = αn1l1n2l2,k. (30)

In both diagonal and off-diagonal subregions terms that violate either of the following two conditions are excluded from the sum in

Eq. (8),

|l1 − l2| 6 L 6 l1 + l2, (31)

mod(l1 + l2,2) 6= Π. (32)

We now determine the energy dependent coefficients AEk by considering,

〈ψk|H|ΨE 〉 − 〈ΨE |H|ψk〉 = (E − Ek)〈ΨE |ψk〉, (33)

where use has been made of Eq. (2) and we have assumed that ΨE , as defined in Eq. (1), satisfies,

HΨE = EΨE . (34)

Using Eqs. (1), (5), (27) (29) in Eq. (33) and defining the surface amplitudes as,

ωn2l1l2,k(r1) =
∞∑

n1=l1+1

νn1l1(r1)an1l1n2l2,k, (35)

ωn1l1l2,k(r2) =
∞∑

n2=l2+1

νn2l2(r2)an1l1n2l2,k, (36)

the radial wavefunction in channel n2l1l2 and channel n1l1l2 as,

yn2l1l2(r1) =
∞∑

k=1

AEkωn2l1l2,k(r1), (37)

yn1l1l2(r2) =
∞∑

k=1

AEkωn1l1l2,k(r2), (38)
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and noting that the only non-zero contribution from the Hamiltonian, H, is ( d2

dr21
+ d2

dr22
), it can be shown that,6

AEk =
1

2(Ek − E)

∑

nl1l2

(
ω(4)nl1l2,k(ai+1)y

′
(4)nl1l2

(ai+1) − ω(2)nl1l2,k(ai)y
′
(2)nl1l2

(ai)

+ ω(3)nl1l2,k(a j+1)y
′
(3)nl1l2

(a j+1) − ω(1)nl1l2,k(a j)y
′
(1)nl1l2

(a j)
)
, (39)

where, the surface amplitudes associated with of the four edges are defined as follows,

ω(1)nl1l2,k =
∞∑

n′=l2+1

anl1n′l2,kνn′l2(a j), (40)

ω(2)nl1l2,k =
∞∑

n′=l1+1

an′l1nl2,kνn′l1(ai), (41)

ω(3)nl1l2,k =
∞∑

n′=l2+1

anl1n′l2,kνn′l2(a j+1), (42)

ω(4)nl1l2,k =
∞∑

n′=l1+1

an′l1nl2,kνn′l1(ai+1). (43)

Substituting Eq. (39) into Eqs. (37) and (38) and evaluating on each of the four edges gives,

y( j)n′l′1l
′
2
=

4∑

i=1

∑

nl1l2

R( j,i)n′l′1l
′
2,nl1l2

y′
(i)nl1l2

ηi, j ∈ {1,2,3,4}, (44)

where, η1 = η2 = −1 and η3 = η4 = +1. The local R-matrix, R( j,i)n′l′1l
′
2,nl1l2

, that relates channel n′l′1l
′
2 on edge j with channel nl1l2 on

edge i is given by,

R( j,i)n′l′1l
′
2,nl1l2

=
1

2

∞∑

k=1

ω( j)n′l′1l
′
2,k

ω(i)nl1l2,k

Ek − E
, j, i ∈ {1,2,3,4}. (45)

Rewriting in a more convenient matrix notation we have,

y
( j)

=
4∑

i=1

R( j,i) y
′
(i)

ηi, j ∈ {1,2,3,4}. (46)

2.2.1. The Buttle correction

In the preceding sections we have assumed that the sums over n1 , n2 and k are infinite. In practice, n1 and n2 are bounded by nmax

and k, the size of the Hamiltonian matrix, is bounded by kmax .
7 To ensure completeness in each channel the higher lying eigenstates in

Eq. (1), k > kmax , are approximated by solutions of a zero-order potential scattering problem, with Hamiltonian, − 1
2
∇2 − Z

r
, where each

electron is treated independently.

Using an analysis similar to that in the preceding section it can be shown that the radial wavefunction in channel nl1l2 in the r1
direction is given by,

ynl1l2(r1) =
∞∑

n′=l1+1

νn′l1(r1)

(k2
n′l1

− k2)

[
νn′l1(ai+1)y

′
nl1l2

(ai+1) − νn′l1(ai)y
′
nl1l2

(ai)
]
, (47)

where the channel energy, k2 is given by,

k2 = 2E − k2nl2 . (48)

Here the radial functions, νnl , and their corresponding eigenvalues, k2
nl
, are solutions of Eqs. (14)–(16b). A similar analysis can be performed

in the r2 direction.

Evaluating the radial wavefunctions in channel nl1l2 on the four edges now gives,

y( j)nl1l2 =
∑

i

R( j,i)nl1l2,nl1l2 y
′
(i)nl1l2

ηi, i, j ∈ {1,2,3,4}, (49)

where,

6 It should be noted that for edges 1 and 3,
∑

nl1l2
= (

∑lmax

l1=0

∑lmax

l2=0

∑∞
n=l2+1), whereas for edges 2 and 4,

∑
nl1l2

= (
∑lmax

l1=0

∑∞
n=l1+1

∑lmax

l2=0
).

7 kmax < (lmax + 1)2n2max .
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R( j,i)nl1l2,nl1l2 =
∞∑

n′=l2+1

ν( j)n′l2ν(i)n′l2

k2
n′l2

− (2E − k2
nl1

)
, j, i ∈ {1,3}, (50a)

R( j,i)nl1l2,nl1l2 =
∞∑

n′=l1+1

ν( j)n′l1ν(i)n′l1

k2
n′l1

− (2E − k2
nl2

)
, j, i ∈ {2,4}, (50b)

R( j,i)nl1l2,nl1l2 = 0, |i − j| = 1 or 3, j, i ∈ {1,2,3,4}. (50c)

The sum in Eqs. (50a)–(50c),
∑∞

n=nmax+1 , provides a correction for the truncated expansion,
∑kmax

k=1
, in Eq. (45). These correction matri-

ces,

R
c
( j,i)nl1l2,nl1l2

=
∞∑

n′=nmax+1

ν( j)n′l2ν(i)n′l2

k2
n′l2

− (2E − k2
nl1

)
, j, i ∈ {1,3}, (51a)

R
c
( j,i)nl1l2,nl1l2

=
∞∑

n′=nmax+1

ν( j)n′l1ν(i)n′l1

k2
n′l1

− (2E − k2
nl2

)
, j, i ∈ {2,4}, (51b)

provide a correction to the diagonal elements of R(1,1) , R(1,3) , R(3,1) , R(3,3) and R(2,2) , R(2,4) , R(4,2) , R(4,4) respectively.

In the case of the off-diagonal correction matrices, Rc
(1,3) , Rc

(3,1) , Rc
(2,4) and Rc

(4,2) , the sum is an alternating series. We have found

through experiments with series acceleration that the correction is small and can be satisfactorily approximated by,

R
c
( j,i)nl1l2,nl1l2

≈
1

2

nmax+10∑

n′=nmax+1

ν( j)n′l2ν(i)n′l2

k2
n′l2

− (2E − k2
nl1

)
, j, i ∈ {1,3}, i 6= j, (52a)

R
c
( j,i)nl1l2,nl1l2

≈
1

2

nmax+10∑

n′=nmax+1

ν( j)n′l1ν(i)n′l1

k2
n′l1

− (2E − k2
nl2

)
, j, i ∈ {2,4}, i 6= j. (52b)

In the case of the diagonal correction matrices Rc
(1,1) , Rc

(2,2) , Rc
(3,3) and Rc

(4,4) the correction is much larger. Here we use a procedure

similar to that described by Buttle [41]. Consider, for example, Eq. (47) evaluated on edge 3,

y(3)n1l1l2 =

( ∞∑

n2=l2+1

ν2
(3)n2l2

k2
n2l2

− k2

)
y′

(3)n1l1l2
−

( ∞∑

n2=l2+1

ν(3)n2l2ν(1)n2l2

k2
n2l2

− k2

)
y′

(1)n1l1l2
. (53)

Since, y(i)nl1l2 , is the solution of Eq. (14)8 at the corresponding channel energy, k2 , provided the subregion is not too large, we find to a

good approximation,

−y′
(1)nl1l2

≈ +y′
(3)nl1l2

, (54)

R(3,3)nl1l2,nl1l2 ≫ R(3,1)nl1l2,nl1l2 . (55)

Eq. (53) thus becomes,

y(3)n1l1l2 ≈

( ∞∑

n2=l2+1

ν2
(3)n2l2

k2
n2l2

− k2

)
y′

(3)n1l1l2
. (56)

Using the same approach on all edges in Eq. (49), the diagonal correction matrices can be approximated by,

R
c
(i,i)nl1l2,nl1l2

≈
y(i)nl1l2

y′
(i)nl1l2

−
nmax∑

n′=l2+1

ν(i)n′l2ν(i)n′l2

k2
n′l2

− (2E − k2
nl1

)
, i ∈ {1,3}, (57a)

R
c
(i,i)nl1l2,nl1l2

≈
y(i)nl1l2

y′
(i)nl1l2

−
nmax∑

n′=l1+1

ν(i)n′l1ν(i)n′l1

k2
n′l1

− (2E − k2
nl2

)
, i ∈ {2,4}. (57b)

2.3. Propagation of the global R-matrix across a general subregion

We now turn to the propagation of the R-matrix across a subregion [29,38]. Consider the general situation in Fig. 3 where we assume

that we already know the global R-matrix, ℜI , associated with the boundary defined by edges 5, 2, 1 and 6 in domain D and we wish

to evaluate the new global R-matrix, ℜO , associated with edges 5, 3, 4 and 6 in domain D ′ following propagation across subregion d. We

note that because of symmetry we need only consider the lower half of domains D and D ′ .
We first rewrite Eq. (46) in subregion d as,

(
y
I

y
O

)
=

(
−rI I rI O
−rO I rO O

)(
y′
I

y′
O

)
, (58)

8 The solution on edge 3 is found by integrating Eq. (14) in the +ve direction, while the solution on edge 1 is found by integrating Eq. (14) in the negative direction.
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Fig. 3. Propagation of the R-matrix from domain D to domain D ′ .

where I represents the input edges 1 and 2, and O represents the output edges 3 and 4 so that,

rI I =
(
R11 R12

R21 R22

)
, (59a)

rI O =
(
R13 R14

R23 R24

)
, (59b)

rO I =
(
R31 R32

R41 R42

)
, (59c)

rO O =
(
R33 R34

R43 R44

)
. (59d)

We can write the global R-matrix, ℜI , in domain D as,

ℜI =
(

ℜI
I I ℜI

I X

ℜI
X I ℜI

X X

)
, (60)

where,
(

y
I

y
X

)
=

(
ℜI

I I ℜI
I X

ℜI
X I ℜI

X X

)(
y′
I

y′
X

)
(61)

with X denoting edges 5 and 6: these edges are common to domains D and D ′ . The global output R-matrix, ℜO , in domain D ′ can be

written as,

ℜO =
(

ℜO
O O ℜO

O X

ℜO
XO ℜO

X X

)
, (62)

where,
(

y
O

y
X

)
=

(
ℜO

O O ℜO
O X

ℜO
XO ℜO

X X

)(
y′
O

y′
X

)
. (63)

Manipulation of Eqs. (58), (61) and (63) results in the following expressions for ℜO in terms of ℜI and the local matrices r,

ℜO
O O = rO O − rO I

(
rI I + ℜI

I I

)−1
rI O , (64a)

ℜO
O X = rO I

(
rI I + ℜI

I I

)−1ℜI
I X , (64b)

ℜO
XO = ℜI

X I

(
rI I + ℜI

I I

)−1
rI O , (64c)

ℜO
X X = ℜI

X X − ℜI
X I

(
rI I + ℜI

I I

)−1ℜI
I X . (64d)

While Eqs. (64a)–(64c) can be applied to the propagation across a general subregion two special situations should noted: propagation

across a diagonal subregion and propagation across a subregion bounded by the r1-axis at the beginning of a new strip.

In the case of a diagonal subregion from symmetry considerations edge 2 is identical to edge 1 and edge 3 is identical to edge 4.

Accordingly, with only one input edge and one output edge Eqs. (59a)–(59d) become,

rI I = 2R11, (65a)

rI O = 2R14, (65b)

rO I = 2R41, (65c)

rO O = 2R44. (65d)
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Fig. 4. Propagation of the R-matrix across the inner region.

In the case of a subregion bounded by the r1-axis at the beginning of a new strip we note that the input boundary I consists of only one

edge. When propagating across the first subregion in the second strip there is no common boundary X : in this case only Eq. (64a) need

be solved.

Having obtained ℜ on the boundary of the innermost subregion (labelled 0 in Fig. 4), ℜ is propagated across each subregion in the

order indicated, working systematically from the r1-axis at the bottom of each strip across all subregions to the diagonal, eventually

yielding the global R-matrix, ℜ, on the boundary of the R-matrix internal and external regions.9

Before matching to the solution in the external region we first project the basis functions which span the elementary edges of this final

boundary, onto the atomic electron basis used in the asymptotic region and transform the global R-matrix accordingly. This is described

in the following section.

2.4. Transformation of the global R-matrix on the boundary between the internal and external regions

In the outer region, r1 > ra , electron exchange between the target electron and the scattered electron is ignored. Here the two-electron

wavefunction is given by,

ΨE(r1, r2) =
∑

n2l1l2

yn2l1l2(r1)

r1
Yl1l2LML

( r̂1, r̂2)
Pn2l2(r2)

r2
, r1 > ra (66)

where, yn2l1l2 (r1) is the unknown radial function of the scattered electron in channel, n2l1l2 , and, Pn2l2 , is the atomic electron basis. The

atomic basis is finite such that 0 6 l2 6 lbndmax and l2 + 1 6 n2 6 nbndmax.10

The boundary radius, ra , is chosen so that the physical, or true, hydrogenic target orbitals of interest are accurately contained within

this boundary. These orbitals are augmented with numerical pseudo-orbitals constructed to be solutions of,
(

d2

dr22
−

l2(l2 + 1)

r22
+

2Z

r2
+ k2n2l2

)
Pn2l2(r2) = 0, (67)

subject to the R-matrix boundary conditions,

Pn2l2(0) = 0, (68a)

ra

Pn2l2(ra)
.
dPn2l2

dr

∣∣∣∣
r2=ra

= 0. (68b)

Provided the boundary is chosen large enough the physical orbitals and the pseudo-orbitals will be automatically orthogonal.

Using Eq. (66) the scattered electron’s radial wavefunction in channel, n2l1l2 , can be written on the boundary, r1 = ra , as,

yn2l1l2(ra)

ra
=

∫
Pn2l2(r2)

r2
Y

∗
l1l2LML

( r̂1, r̂2)ΨE(r1, r2)d r̂1 dr2, r1 = ra. (69)

Following the propagation across the inner-region we have a contribution to ΨE on the boundary, r1 = ra , from each subregion i. Denoting

this contribution by, Ψ i
E , we have,

Ψ i
E(r1, r2) =

∑

n2l1l2

yi
n2l1l2

(ra)

ra
Yl1l2LML

( r̂1, r̂2)
ν i
n2l2

(r2)

r2
, ai−1 6 r2 6 ai . (70)

Thus at, r1 = ra , in subregion i, the contribution to the radial wavefunction in channel, n2l1l2 , is given by,

yn2l1l2(ra)

ra
=

∫
Pn2l2(r2)

r2
Y

∗
l1l2LML

( r̂1, r̂2)Ψ
i
E(r1, r2)d r̂1 dr2, ai−1 6 r2 6 ai . (71)

9 The route through the inner-region is not unique. For example, it is possible to proceed horizontally across rows rather than vertically in columns as illustrated in Fig. 4.

However, the amount of computation required for each route is different. An informal proof that the route indicated in Fig. 4 is optimal is given in [33].
10 The physical states are known exactly and may be represented as analytic functions of the form, Pnl(r) =

∑
i=1,nt coef [i] ∗ rirad[i] ∗ e−alpha∗r , with 0 6 l 6

min(lbndmax,nbound − 1) and l + 1 6 n 6 nbound. See Section 4.2 for information on the choice of lbndmax, nbndmax and nbound.



2434 N.S. Scott et al. / Computer Physics Communications 180 (2009) 2424–2449

Substituting Eq. (70) into Eq. (71), and considering all subregions, we find that,

yn2l1l2(ra) =
nstrips∑

i=1

nmax∑

n=l2+1

Ai
n2l2n

yinl1l2(ra), (72)

where,

Ai
n2l2n

=
ai∫

ai−1

Pn2l2(r2)ν
i
nl2

(r2)dr2. (73)

For convenience we introduce a new notation for the radial basis functions, ν i
nl2

, and the radial wavefunction in each channel as follows,

µnl2(r2) = ν1
(n+l2)l2

(r2), n = 1 . . . g,

µ(n+g)l2(r2) = ν2
(n+l2)l2

(r2), n = 1 . . . g,

µ(n+2g)l2(r2) = ν3
(n+l2)l2

(r2), n = 1 . . . g,

...

µ(n+(nstrips−1)g)l2(r2) = ν
nstrips
(n+l2)l2

(r2), n = 1 . . . g, (74)

unl1l2(ra) = y1(n+l2)l1l2
(ra), n = 1 . . . g,

u(n+g)l1l2(ra) = y2(n+l2)l1l2
(ra), n = 1 . . . g,

u(n+2g)l1l2(ra) = y3(n+l2)l1l2
(ra), n = 1 . . . g,

...

u(n+(nstrips−1)g)l1l2(ra) = y
nstrips
(n+l2)l1l2

(ra), n = 1 . . . g, (75)

where, g = nmax − l2 . Accordingly, Eq. (72) becomes,

yn2l1l2(ra) =
g×nstrips∑

i=1

Bn2l2iuil1l2(ra), (76)

with,

Bn2l2i =

g×nstrips∫

0

Pn2l2(r2)µil2(r2)dr2. (77)

We can further introduce a matrix,

Cn2l1l2,il
′
1l

′
2
= Bn2l2iδl1l′1

δl2l′2
, (78)

with the property, CT C = I, which relates the physical wavefunction, yn2l1l2 (ra), on the boundary to the corresponding basis wavefunctions

in the subregions, i.e.

y = CuO , (79)

y′ = Cu′
O . (80)

Since,

uO = ℜO
O Ou

′
O , (81)

and

y = CℜO
O OC

T y′, (82)

we find that the physical R-matrix on the boundary is related to the global R-matrix on the boundary through the unitary transformation,

R = CℜO
O OC

T . (83)
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Fig. 5. The 2DRMP suit. Each program belongs to one of four functional blocks: A, B, C or D. The blocks must be performed sequentially and communication between

programs is through files. Blocks A and B are independent of the collision energy and need only be performed once while blocks C and D are dependent on the collision

energy and must be repeated hundreds or thousands of times.

2.5. The external region and the potential matrix V i j

Finally, we briefly comment on the solution of the equations in the external region. In this region the equations are of the form found

in the standard R-matrix method [43],

(
d2

dr2
−

li(li + 1)

r2
+ k2i

)
Fi j(r) = 2

N∑

p=1

V ipFpj, i, j = 1 . . .N. (84)

In this equation, the channel orbital angular momenta are denoted by li , the channel momenta, ki , by

k2i = 2
(
E − ET

i

)
, (85)

where ET is the energy of the target corresponding to channel i and E is the incident energy. The interaction between the projectile and

the target, V i j is given by the electrostatic multipole expansion (see Eq. (7.33) of [26]),

V i j(r) =
λmax∑

λ=1

aλ
i j

rλ+1
. (86)

In Eq. (86) the long-range potential coefficients, aλ
i j , simplify to (see Eqs. (7.34) and (7.35) of [26]),

aλ
i j = fλ(l1, l2, l3, l4 : L)Iλi j, (87)

where,

Iλi j =
ra∫

0

Pn1l1(r)r
λPn3l3(r)dr, (88)

and where Pn1l1 (r) and Pn3l3 refer to the atomic orbitals in channel i and j respectively.

Eqs. (84) are integrated outwards, subject to the R-matrix boundary conditions, using the FARM_2DRMP package [42], a modified

version of FARM [43], to yield cross sections and other scattering observables of interest.

3. The 2DRMP software package outline

The two-dimensional propagator model described in the previous section has been implemented as a suite of seven programs, named

2DRMP, as depicted in Fig. 5. These programs have been designed to operate on serial computers and to exploit the distributed memory

parallelism found on tightly coupled high performance clusters and supercomputers.
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Fig. 6. The ROBODoc master index for Program 6 (prop). Separate indexes are provided for programs, modules, functions and subroutines.

2DRMP has been systematically and comprehensively documented using ROBODoc [44] which is an API documentation tool that works

by extracting specially formatted headers from the program source code and writing them to documentation files. This allows a program

and its documentation to be maintained in a single file. Each of the programs in Fig. 5 is accompanied by HTML documentation that can be

accessed via a master index as illustrated in Fig. 6 for Program 6 (prop). Selecting one of the hyperlinks displays the corresponding docu-

mentation which comprises the routine’s signature, purpose and source code. This is shown in Fig. 7 for construct_global_rmatrix

which is an internal subprogram of module global_rmatrix.

We begin by sketching the architecture of the 2DRMP suit, highlighting the principal function of each program. Each program belongs

to one of four functional blocks: A, B, C or D. These blocks must be completed sequentially. Blocks A and B are independent of the collision

energy and need only be performed once while blocks C and D are dependent on the collision energy and must be repeated hundreds or

thousands of times. Communication between programs is through files as illustrated in Fig. 8.

Block A contains two independent programs that are not computationally intensive. Program 1 (bp) constructs the atomic basis func-

tions, defined by Eqs. (67)–(68b), and the long-range potential coefficients, defined by Eqs. (87)–(88), that are to be used to define the

atomic target in the external region. Program 2 (rint2) computes the radial integrals, defined by Eq. (25), to be used in the construction

of the Hamiltonian matrix in off-diagonal subregions.

In Block B: Program 3 (newrd) constructs a subregion Hamiltonian matrix, as defined by Eqs. (18)–(22); Program 4 (diag) diagonalises

the corresponding matrix; and Program 5 (amps) constructs the surface amplitudes on the subregion’s edges using the matrix’s eigenvec-

tors as defined by Eqs. (40)–(43). Each column in Block B corresponds to an independent subregion. The rows of Block B are pleasingly

parallel. For example, Program 3 (newrd) can be used to construct a group of nsubregion subregion matrices using ncps cores for each
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Fig. 7. ROBODoc documentation for construct_global_rmatrix comprising the subroutine’s signature, purpose and source code: construct_global_rmatrix is

an internal subprogram of module global_rmatrix.

subregion.11 This is illustrated by the dashed line rectangle in Fig. 5 where each matrix construction is spread across a 2 × 2 grid of

cores. Programs 4 (diag) and 5 (amps) have a similar capability, however, Program 5 (amps) has only been implemented for one core per

subregion i.e. ncps = 1.

Block C uses Program 6 (prop) to propagate the global R-matrix, ℜ, across all the subregions of the inner-region, in the order dictated

by Fig. 4, using Eqs. (64a)–(64d). Each element in this block corresponds to a series of propagations across a range of scattering energies.

The k elements can be computed in parallel with ncpe cores devoted to each element.12 When the boundary between the internal and

external region is reached the global R-matrix is transformed through the unitary transformation described by Eq. (83).

The final block, Block D, corresponds to the solution of Eq. (84). Again each element in this block corresponds to a range of scattering

energies. In the source code distribution we have included a modified version of FARM [43], FARM_2DRMP [42] that allows k elements to

be computed simultaneously across k cores.

We now turn to a description of the salient features of each of the programs.

3.1. Program 1 (bp)

Program 1 (bp) constructs the atomic basis functions, defined by Eqs. (67)–(68b), and the long-range potential coefficients, defined by

Eqs. (87)–(88). These are used to define the atomic target in the external region. The program’s call graph is shown below and is followed

by a brief description of the key subroutines.

11 nsubregion > 1, ncps > 1 and ncore = nsubregion × ncps .
12 k > 1, ncpe > 1 and ncore = k × ncpe .
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Fig. 8. This figure shows the user supplied input files and program generated output files used to communicate amongst the seven programs identified in Fig. 5. Filenames in

italics indicate binary files, other files are text files. X = 01,02 . . .nstrip; Y = ‘lt’ or ‘gt ’; Z = 000,001 . . .nsector −1; W = 00,01 . . .ncps −1; V = 01,02 . . .nstrip , U = 01,02 . . . V ,

where nstrip is the number of subregions across the x-axis (or y-axis), nsector is the total number of subregions and ncps is the number of cores used per subregion;

T = 0000,0001, . . .nenergy − 1, where nenergy is the number of scattering energies. The input file grid.data, indicated by the dashed line, is only used when ncps > 1.

1: BP

2: READS

3: BNDORBS

4: MACHIN

5: SETMESH

6: PSFINDER1

7: USOLVE

8: DE

9: NUMNODE

10: ROOT

11: ABNORM

12: BLKORBS

13: SETMESH

14: USOLVE [see line 7]

15: GETORB

16: ABNORM

17: AIJCALC

18: FACTT

19: SHRIEK

20: EVALUE

21: SETMESH

22: FLAMDA

23: CG

24: DRACAH

25: RAIJ

3.1.1. READS

Reads the input data supplied through the input file input.dat described in Appendix A.
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3.1.2. BNDORBS

Solves the eigenvalue problem defined by Eqs. (67)–(68b). Trial eigenvalues are iterated on until the boundary conditions are satisfied:

this is controlled by PSFINDER1. Eq. (67) is solved using the DE package of Shampine and Gordon [45].

3.1.3. BLKORBS

As required by Eq. (73), Eq. (67) is recomputed, using the eigenvalues found in BNDORBS, at the r2 mesh points across each subregion

at boundary r1 = ra . This subroutine writes the unformatted binary files borbX depicted in Fig. 8.

3.1.4. AIJCALC

This subroutine controls the calculation of the long-range potential coefficients, aλ
i j , defined by Eqs. (23), (87)–(88). FLAMDA computes

fλ(l1, l2, l3, l4 : L), defined by Eq. (23), using CG and DRACAH to compute Clebsch-Gordan and Racah coefficients respectively. RAIJ com-

putes Iλi j . In practice, λmax 6 6 and aλ
i j is only used to couple channels involving physical channels, all other aλ

i j elements are set to zero.

This subroutine writes the unformatted binary file aij depicted in Fig. 8.

3.2. Program RINT2

Program 2 (rint2) is primarily concerned with computing information required in off-diagonal subregions. In particular, it computes

the greater than integrals,
∫ ai+1

ai

νn1l1 (r)νn3l3 (r)

rλ+1 dr, and the less than integrals,
∫ ai+1

ai
νn2l2 (r)νn4l4 (r)r

λ dr, for i = 0,nstrip − 1.

The program also computes information to enable the evaluation of Rc
(i,i) , defined by Eq. (57a), in off-diagonal subregions. The addi-

tional 10 orbitals required for the evaluation of Rc
(1,3) , Rc

(3,1) , Rc
(2,4) and Rc

(4,2) in Eqs. (52a)–(52b) are also computed here.

The integrals and fitting coefficients are written to the binary files sintgtX and sintltX as shown in Fig. 8. Because of symme-

try properties amongst off-diagonal subregions these files contain sufficient information to enable the computation of RO D
λ , defined by

Eq. (25), and Rc
(i,i) , defined by Eqs. (57a)–(57b), in all off-diagonal subregions.

1: RINT2

2: READS

3: INIT

4: ORBS

5: MACHIN

6: PSFINDER

7: USOLVE

8: DE

9: NUMNODE

10: ROOT

11: ABNORM

12: BUTTLE

13: USOLVE [see line 7]

14: LSQ

15: MA01A

16: PMUL

17: SKINT

The program’s call graph is shown above and the key subroutines are described below. Steps (3)–(17) inclusive are repeated for each

subregion in the rightmost vertical strip (see Fig. 1).

3.2.1. READS

Reads the input data supplied through the input file input.dat described in Appendix A.

3.2.2. INIT

Initialises the integration mesh within a given subregion.

3.2.3. ORBS

Solves the eigenvalue problem, defined by Eqs. (14)–(16b), on a given subregion: as in Program 1 this is controlled by PSFINDER and

uses the DE package of Shampine and Gordon [45]. For each orbital angular momentum solutions up to principal quantum number n =
nmax + 10 are computed. The additional 10 solutions are needed to compute Rc

(1,3) , Rc
(3,1) , Rc

(2,4) and Rc
(4,2) as described by Eqs. (52a)–

(52b).

Subroutine BUTTLE is called to compute Rc
(i,i) , defined by Eq. (57a). This correction is dependent on the channel energy. However,

since the correction is slowly varying with respect to channel energy it is approximated by a quadratic using a least squares fit across a

range of energies (see Section 7.4.1.5 of [26]),

R
c
(i,i) = a0 + a1k

2 + a2k
4, i ∈ {1,3}. (89)

The least squares fit defined by Eq. (89) is computed in LSQ.
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3.2.4. SKINT

This subroutine computes the greater than integral,
∫ ai+1

ai

νn1l1 (r)νn3l3 (r)

rλ+1 dr, and the less than integrals,
∫ ai+1

ai
νn2l2 (r)νn4l4 (r)r

λ dr. This infor-

mation is written to the unformatted binary files sintgtX and sintltX and supplemented with off-diagonal subregion data in the

form of basis function eigenvalues and eigenfunction values on the subregions 4 edges (see Eqs. (14)–(16b)).

3.3. Program NEWRD

The purpose of NEWRD is to build nsubregion Hamiltonian matrices in given subregions, as described by Section 2.1.1, where nsubregion > 1.

The subregions to be considered are specified in the file sectors.dat which is described in Appendix B. Additionally, when the subre-

gion is a diagonal subregion the Ai coefficients, defined by Eq. (73), are computed, as is information to enable the computation of Buttle

corrections as described by Section 2.2.1.

The program’s call graph is shown below: steps (2)–(31) inclusive are repeated for each subregion under consideration; steps (3)–

(26) inclusive are invoked for diagonal subregions only and steps (28)–(30) are invoked for off-diagonal subregions only. When

USE2MPILAYERS is set, see Sections 3.3.5 and 3.3.8 below, Step 31 is only invoked by the master core within each grid.

1: NEWRD

2: READS

3: INIT

4: ORBS

5: MACHIN

6: PSFINDER

7: USOLVE

8: DE

9: NUMNODE

10: ROOT

11: ABNORM

12: BUTTLE

13: USOLVE [see line 7]

14: LSQ

15: MA01A

16: PMUL

17: CHECK

18: ABNORM

19: FLAMDA

20: FACTT

21: SHRIEK

22: CG

23: DRACAH

24: HMATD

25: HMATDROW

26: RKINT

27: PHYSCOEF

28: READSSKINT

29: HMATO

30: HMATOROW

31: FILWRT

3.3.1. READS

Reads the input data supplied through the input file input.dat described in Appendix A.

3.3.2. INIT

Initialises the integration mesh within a given diagonal subregion.

3.3.3. ORBS

Solves the eigenvalue problem, defined by Eqs. (14)–(16b), on a given diagonal subregion: as in Program 1 (bp) this is controlled by

PSFINDER and uses the DE package of Shampine and Gordon [45]. As in Program 1 (bp) information is computed to enable the evaluation

of the Buttle corrections as described by Section 2.2.1. Note that on a diagonal subregion edges 1 and 3 are identical to edges 2 and 4,

respectively.

3.3.4. FLAMDA

FLAMDA computes fλ(l1, l2, l3, l4 : L), defined by Eq. (23), using CG and DRACAH to compute Clebsch–Gordan and Racah coefficients

respectively.

3.3.5. HMATD

HMATD is used to construct the Hamiltonian matrix on a diagonal subregion, as defined by Eqs. (18)–(21). The size of the Hamiltonian

matrix, ipcount-1, is determined by the permissible values of n1l1 and n2l2 in Eq. (8). The permissible values of n1l1 and n2l2 are



N.S. Scott et al. / Computer Physics Communications 180 (2009) 2424–2449 2441

restricted by Eqs. (28a)–(28c) and (31)–(32) and stored in arrays ione and itwo, respectively. RKINT is used to compute the two-

dimensional radial integrals, RD
λ , defined by Eq. (24). When USE2MPILAYERS is set the rows of the matrix are distributed, in a load

balanced fashion, across the cores within the nrow × ncolumn grid of cores dedicated to the subregion. The rows of the matrix are written

to the binary file rhmatZW by each core as described in Fig. 5.

3.3.6. PHYSCOEF

The Ai
n2l2n

coefficients, defined by Eq. (73), are computed on diagonal subregions and stored in array acoeff.

3.3.7. READSSKINT

READSRKINT reads the unformatted binary files sintgtX and sintltX corresponding to the off-diagonal subregion under consid-

eration and stores the greater than integrals and the less than integrals in arrays skint1 and skint2 respectively.

3.3.8. HMATO

HMATO is used to construct the Hamiltonian matrix on an off-diagonal subregion, as defined by Eq. (22). The size of the Hamiltonian

matrix, ipcount-1, is determined by the permissible values of n1l1 and n2l2 in Eq. (8). The permissible values of n1l1 and n2l2 are

restricted by Eqs. (31)–(32) and stored in arrays ione and itwo, respectively. The radial integrals, RO D
λ , defined by Eq. (25), are built from

the arrays skint1 and skint2 previously set in READSSKINT. When USE2MPILAYERS is set the rows of the matrix are distributed,

in a load balanced fashion, across the cores within the nrow × ncolumn grid of cores dedicated to the subregion. The rows of the matrix are

written to the binary file rhmatZW by each core as described in Fig. 8.

3.3.9. FILWRT

Subregion data in the form of basis function eigenvalues and eigenfunction values on the subregions 4 edges (see Eqs. (14)–(16b)),

arrays ione and itwo, and Buttle correction data are written to file rdataZ as described in Fig. 8. On diagonal subregions this data is

supplemented with array acoeff computed in PHYSCOEF.

3.3.10. The executables

Three executables are built by the makefile: newrd.exe, newrd_1mpi.exe and newrd_2mpi.exe. We shall assume that ncore cores are

available, where ncore > 1.

• newrd.exe: This is a serial code where the nsubregion matrices are constructed sequentially.

• newrd_1mpi.exe: The build of this executable is controlled by the macro USEMPI which is set in the makefile. Here each subregion

is assigned to a single core with each core processing either ⌊nsubregion
ncore

⌋ or ⌈nsubregion
ncore

⌉ subregions.

• newrd_2mpi.exe: The build of this executable is controlled by the macro USE2MPILAYERS which is set in the makefile. In this

scenario the ncore cores are partitioned into ngrid grids, each with nrow × ncolumn cores.13 Each subregion is assigned to a grid and

each grid processes either ⌊nsubregion
ngrid

⌋ or ⌈nsubregion
ngrid

⌉ subregions. The topology of the grid is specified in the file grid.data which is

described in Appendix C.

3.4. Program DIAG

The purpose of DIAG is to diagonalise nsubregion Hamiltonian matrices in specified subregions, thereby generating in each subregion, the

eigenvalues, Ek , and the eigenvectors, αn1l1n2l2,k , defined, respectively, by Eqs. (7) and (8). The subregions to be considered are specified

in the file sectors.dat. The resulting eigenvalues and eigenvectors are stored in files hdiagZ, where Z = 000,001, . . .nsector − 1, as

described in Fig. 8.

The program uses an object-based programming style and is composed of the following modules which are located in the

subdirectory /DIAG: constants.f90, diag.f90, errors.f90, matrix_par.f90, matrix_seq.f90, system_par.f90 and

system_seq.f90. Equivalent parallel and serial methods, found respectively in the corresponding _par and _seq modules, have iden-

tical method signatures. Accordingly, the system and matrix modules provide an abstract layer that shields the user from needing to

know the details of the underlying architecture. The modules are briefly described as follows.

3.4.1. constants.f90

The module defines global constants including file handles.

3.4.2. diag.f90

The driver subroutine.

3.4.3. errors.f90

This module attempts to trap and exit gracefully from fatal and non-fatal errors. These errors take the form of file errors, memory

allocation errors and LAPACK and ScaLAPACK routine errors.

3.4.4. matrix_par.f90

This module defines a matrix abstract data type (ADT). It includes types and methods to allow, within a parallel environment: matrix

creation; matrix destruction; matrix copying; matrix assignment; matrix distribution; and linear algebra operations including multiplica-

tion, addition, inversion and diagonalisation.

13 ncps = nrow × ncolumn and ncore = ngrid × ncps .
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3.4.5. matrix_seq.f90

This module mirrors matrix_par.f90 but for a serial environment.

3.4.6. system_par.f90

This module defines a system ADT. It contains private system data including: row and column blocking factors; the core’s ID; the

number of cores; the number of grids; the grid ID; the grid topology; the grid context. It also provides a collection of methods to set and

get this data.

3.4.7. system_seq.f90

This module mirrors system_par.f90 but for a serial environment.

3.4.8. The executables

Three executables are built by the makefile: diag.exe, diag_1mpi.exe and diag_2mpi.exe. We shall assume that ncore cores are available,

where ncore > 1.

• diag.exe: This is a serial code where the nsubregion matrices are constructed sequentially. In this case the serial modules

matrix_seq.f90 and system_seq.f90 are used in the compilation of the executable. Each subregion Hamiltonian matrix is

contained in the single file rhmatZ00 as described in Fig. 8, where Z indicates the subregion number. Each matrix is diagonalised

by a single core using the LAPACK subroutine xSYEV.

• diag_1mpi.exe: The build of this executable is controlled by the macro USEMPI with the serial modules matrix_seq.f90 and

system_seq.f90 being used in the compilation of the executable. Each subregion is assigned to a single core with each core

processing either ⌊nsubregion
ncore

⌋ or ⌈nsubregion
ncore

⌉ subregions. Each matrix is diagonalised by a single core using the LAPACK subroutine xSYEV.

• diag_2mpi.exe: In this case the parallel modules matrix_par.f90 and system_par.f90 are used in the compilation of the

executable. The ncore cores are partitioned into ngrid grids each with nrow × ncolumn cores.14 Each subregion is assigned to a grid and

each grid processes either ⌊nsubregion
ngrid

⌋ or ⌈nsubregion
ngrid

⌉ subregions. The master core within each grid of ncps cores reads the Hamiltonian

matrix and block-cyclically distributes it across the grid. The topology of the grid and the blocking factor required by ScaLAPACK is

specified in the file grid.dat, as described in Appendix C. Diagonalisation is performed using the ScaLAPACK subroutine PxSYEVD.

On completion the eigenvalues and eigenvectors are copied to the master core which writes them to hdiagZ.

3.5. Program AMPS

The primary purpose of AMPS is to construct the surface amplitudes defined by Eqs. (40)–(43) across nsubregion subregions, where

nsubregion > 1. The subregions to be considered are specified in the file sectors.dat which is described in Appendix B. Additionally, in

diagonal subregions the contribution to the C-matrix, defined by Eq. (78), is constructed. The program’s call graph is shown below.

1: READFILE

if origin subregion

2: AMPD4

3: CMATRIX

endif

if axis subregion

4: AMPO24

5: AMPO3

endif

if general subregion

6: AMPO24

7: AMPO13

endif

if diagonal subregion, other than origin subregion

8: AMPD24

9: CMATRIX

endif

The key subroutines in AMPS are described as follows.

3.5.1. READFILE

This subroutine reads the file rdataZ written by NEWRD and transfers its contents to rinVU.

3.5.2. AMPD4

This subroutine evaluates the surface amplitude, ω(4)nl1l2,k , associated with edge 4 (see Fig. 2) in the origin subregion15 as defined by

Eq. (43), with, anlnl,k , given by Eqs. (28a)–(28c). The surface amplitudes are written to the direct access file ampsVU as described in Fig. 8.

14 ncps = nrow × ncolumn and ncore = ngrid × ncps .
15 Subregion 0 in Fig. 4.
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3.5.3. AMPD24

This subroutine evaluates the surface amplitudes, ω(2)nl1l2,k and ω(4)nl1l2,k , associated with edges 2 and 4 (see Fig. 2) in a diagonal

subregion16 as defined by Eqs. (41) and (43), respectively, with, anlnl,k , given by Eqs. (28a)–(28c). The surface amplitudes are written to

the direct access file ampsVU as described in Fig. 8.

3.5.4. AMPO3

This subroutine evaluates the surface amplitude, ω(3)nl1l2,k , associated with edge 3 (see Fig. 2) in an axis subregion17 as defined by

Eq. (42), with, anlnl,k , given by Eq. (30). The surface amplitudes are written to the direct access file ampsVU as described in Fig. 8.

3.5.5. AMPO13

This subroutine evaluates the surface amplitudes, ω(1)nl1l2,k and ω(3)nl1l2,k , associated with edges 1 and 3 (see Fig. 2) in a general

subregion18 as defined by Eqs. (40) and (42), with, anlnl,k , given by Eq. (30). The surface amplitudes are written to the direct access file

ampsVU as described in Fig. 8.

3.5.6. AMPO24

This subroutine evaluates the surface amplitudes, ω(2)nl1l2,k and ω(4)nl1l2,k , associated with edges 2 and 4 (see Fig. 2) in a general

subregion as defined by Eqs. (41) and (43), with, anlnl,k , given by Eq. (30). The surface amplitudes are written to the direct access file

ampsVU as described in Fig. 8.

3.5.7. CMATRIX

Ai coefficients constructed in NEWRD are read from the appropriate rdataZ file. Their contribution to the C-matrix, defined by

Eq. (78), is constructed. The resulting submatrix of C is appended to rinVU as described in Fig. 8.

3.5.8. The executables

Two executables are built by the makefile: amps.exe and amps_1mpi.exe. We shall assume that ncore cores are available, where ncore > 1.

• amps.exe: This is a serial code where the surface amplitudes in the nsubregion subregions are built sequentially.

• amps_1mpi.exe: The build of this executable is controlled by the USEMPI macro. Here each subregion is assigned to a single core

with each core processing either ⌊nsubregion
ncore

⌋ or ⌈nsubregion
ncore

⌉ subregions.

3.6. Program PROP

The primary purpose of PROP is to propagate the global R-matrix across the internal-region, as described in Section 2.3, for each of

nenergy scattering energies. The energies are specified in the file energies.data which is described in Appendix D. As described in

Fig. 8, PROP produces a single H file and a collection of RmatT files, one for each scattering energy. The value of T is the index of the

corresponding energy in the range defined by energies.data.19

The program uses an object-based programming style and is composed of the modules below which are located in the subdirectory

/PROP. Equivalent parallel and serial methods, found respectively in the corresponding _par and _seq modules, have identical method

signatures. Accordingly, the _par and _seq modules provide an abstract layer that shields the user from needing to know the details of

the underlying architecture. The modules are briefly described as follows.

3.6.1. amplitudes.f90

This module is used to read, from ampsVU, the surface amplitudes, ω(i)nl1l2,k , described in Eq. (45) as required by the subregion under

consideration. A complementary collection of surface amplitudes scaled by 1
2(Ek−E)

is also computed and stored in array scaled_amps.

3.6.2. axis.f90

This file contains subroutine evaluate_axis_block and is used to compute, ℜO , using Eqs. (64a)–(64d), as the global R-matrix is prop-

agated across an axis subregion. When propagating across the first axis subregion20 there is no common boundary X and only Eq. (64a)

needs to be solved. The file is #included in global_matrix.f90.

3.6.3. block_information.f90

This is an ADT designed to set and access basic data associated with the subregion including its: id, width, total orbital and spin

angular momenta, parity, nmax , lmax .

3.6.4. buttle_corrections.f90

This module computes the two types of Buttle correction. The first, Rc
(1,1) , Rc

(2,2) , Rc
(3,3) and Rc

(4,4) , is defined by Eqs. (57a)–(57b),

while the second, Rc
(1,3) , Rc

(3,1) , Rc
(2,4) and Rc

(4,2) , is defined by Eqs. (52a)–(52b).

16 Subregions 1,2,5,9, . . . in Fig. 4.
17 Subregions 1, 3, 6, . . . in Fig. 4.
18 Subregions 4, 7, 8, . . . in Fig. 4.
19 Computational note: the local R-matrices in subregion I i, j , described by Eq. (45), are scaled by 1

a j+1−a j
. The physical R-matrix, R, described by Eq. (83), is scaled by

a further 1
nsector

. This means that the physical R-matrix, R, is scaled in total by 1
a
, a being the boundary radius. This is done because the FARM program [43] expects an

R-matrix in the form described by Eqs. (25)–(26) of [46].
20 Subregion 1 in Fig. 4.
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3.6.5. c_matrix.f90

This module constructs the complete C-matrix defined by Eq. (78).

3.6.6. channel_info.f90

This ADT reads the channel data, nl1l2 , for the subregion under consideration from the file rinVU.

3.6.7. constants.f90

The module defines global constants for internal use. These include file handles, subregion and edge identifiers.

3.6.8. diagonal.f90

This file contains subroutine evaluate_diagonal_block an is used to compute, ℜO , using Eqs. (64a)–(64d) and (65a)–(65d), as the global

R-matrix is propagated across a diagonal subregion. The file is #included in global_matrix.f90.

3.6.9. energies.f90

This module implements an ADT for an energy object which holds the range of scattering energies to be considered and the total

energy, E , of the two electron system. This information is derived from data the file energies.data which is described in Appendix D.

3.6.10. errors.f90

This module attempts to trap and exit gracefully from fatal and non-fatal errors. These errors take the form of file errors, memory

allocation errors and LAPACK and ScaLAPACK routine errors.

3.6.11. files.f90

This module manages I/O processing to and from external files, aij, rinVU, ampsVU, H and RmatT as described in Fig. 8.

3.6.12. global_matrix.f90

This module handles the storage and processing of the global R-matrix objects, ℜI and ℜO . This includes the construction of the global

R-matrix in the origin subregion and the constructions of the physical R-matrix, R, defined by Eq. (83).

3.6.13. local_rmatrices.f90

This module handles the construction in each subregion of the local R-matrices, rI I , rI O , rO I and rO O , defined by Eqs. (59a)–(59d).

3.6.14. matrix_par.f90

This module defines a matrix abstract data type (ADT). It includes types and methods to allow, within a parallel environment: matrix

creation; matrix destruction; matrix copying; matrix assignment; matrix distribution; and linear algebra operations including multiplica-

tion, addition, inversion and diagonalization.

3.6.15. matrix_seq.f90

This module mirrors matrix_par.f90 but for a serial environment.

3.6.16. offdiagonal.f90

This file contains subroutine evaluate_offdiagonal_block and is used to compute, ℜO , using Eqs. (64a)–(64d), as the global R-matrix is

propagated across a general subregion. The file is #included in global_matrix.f90.

3.6.17. propagator_par.f90

This is the driver routine for a parallel environment. It controls the propagation described in Section 2.3.

3.6.18. propagator_seq.f90

This is the driver routine for a serial environment. It mirrors propagator_par.f90.

3.6.19. states.f90

This module is primarily concerned with organising data into the format that is required by the FARM program [43]. In particular, the

target states and associated channel information are reordered into numerically ascending order before being written to the H-file.

3.6.20. storage.f90

This module contains the methods that create and destroy the dynamic storage of objects whose lifetime spans all the subregion

computations. There are also destructors for objects whose lifetime spans a single subregion.

3.6.21. system_par.f90

This module defines a system ADT. It contains private system data including: row and column blocking factors; the core’s ID; the

number of cores; the number of grids; the grid ID; the grid topology; the grid context. It also provides a collection of methods to set and

get this data.

3.6.22. system_seq.f90

This module mirrors system_par.f90 but for a serial environment.
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3.6.23. timing.f90

This module provides a class that measures total program and specific subregion execution times within the master process. Timing of

the propagation stage is controlled by the TIMING macro that is set in the makefile.

3.6.24. The executables

Three executables are built by the makefile: prop.exe, prop_1mpi.exe and prop_2mpi.exe. We shall assume that ncore cores are available,

where ncore > 1.

• prop.exe: This is a serial code where the nenergy propagations are performed sequentially.

• prop_1mpi.exe: The build of this executable is controlled by the macro USEMPI. Here each propagation is assigned to a single core

with each core processing either ⌊nenergy
ncore

⌋ or ⌈nenergy
ncore

⌉ propagations. Matrix multiplications are performed throughout using BLAS and

matrix inversions are performed using LAPACK.

• prop_2mpi.exe: This case the parallel modules *_par.f90 are used in the compilation of the executable. In this scenario the ncore cores

are partitioned into ngrid grids each with nrow × ncolumn cores, i.e. ncps = nrow × ncolumn and ncore = ngrid × ncps . Each propagation is

assigned to a grid and each grid processes either ⌊nenergy
ngrid

⌋ or ⌈nenergy
ngrid

⌉ propagations. The topology of the grid is specified in the file

grid.data which is described in Appendix C. Matrix multiplications are performed throughout using PBLAS and matrix inversions

are performed using ScaLAPACK.

3.7. Program FARM

To complete the package an asymptotic program, such as FARM [43], is needed to solve the system of equations defined by Eq. (84).

The original version of FARM [43] is designed to construct the physical R-matrix, R, of Eq. (83), from surface amplitudes contained in the

H-file. However, in 2DRMP, R, has already been constructed for each scattering energy during propagation and each R is stored in one of

the RmatT files described in Fig. 8. Therefore, a modified version of FARM, known as FARM_2DRMP, has been developed solely for use

with 2DRMP and is published in this issue as a New Version Announcement [42].

FARM_2DRMP contains two codes, farm.f and farm_par.f90. The former is a serial code while the latter is a parallel F95 code

that employs an MPI harness to enable the nenergy energies to be computed simultaneously across ncore cores, with each core processing

either ⌊nenergy
ncore

⌋ or ⌈nenergy
ncore

⌉ energies. The input files, input.d and H, and the output file farm.out are as described in [43]. The

energy range specified in input.dmust match that specified in energies.data. Both codes read R directly from RmatT.

4. Installation and test run

4.1. 2DRMP installation

(1) 2DRMP and FARM_2DRMP are distributed as a compressed (gzip) tar files, AEEA_v1_0.tar.gz and ADAZ_v1_1.tar.gz respectively. Uncom-

press the tar files and extract their contents, e.g., using the UNIX commands,

$ gunzip AEEA_v1_0.tar.gz

$ gunzip ADAZ_v1_1.tar.gz

$ tar xvf AEEA_v1_0.tar

$ tar xvf ADAZ_v1_1.tar

(2) Two directories, AEEA_v1_0/ and ADAZ_v1_1/, will be created in the working directory. Within AEEA_v1_0/ there are the scripts, make-

file.‘X’, prepare4run, tidyup and the subdirectories, DOC/, SRC/, TEST_OUTPUT/, inputdata/ and run.‘X’/, where ‘X’ corresponds to hp, hpcx

and hector, the three systems on which the programs have been tested (see PROGRAM SUMMARY). Within ADAZ_v1_1/ there is a

FARM/ subdirectory.

(3) Copy the FARM/ subdirectory to AEEA_v1_0/SRC/ and change directory to AEEA_v1_0/.

$ cp -r ADAZ_v1_1/FARM AEEA_v1_0/SRC/

$ cd AEEA_v1_0

(4) Construct, or edit, makefiles.‘X’ in the working directory and in SRC/ and its subdirectories, DIAG/, FARM/, and PROP/ appropriate for

your system.

(5) Construct, or edit, job submission scripts within run.‘X’/ appropriate for your system.

(6) Execute the script

$./prepare4run ‘X’

This will: create symbolic links from the working directory to data files in /inputdata and to job submission scripts in run.‘X’/; create

three new subdirectories, Log/, Sector_Data/, and propfarm/ used to hold the results when programs are executed; and compile the

source code located in /SRC.

The script tidyup can be run at any stage to restore the working directory to its state in (1) above. HTML documentation for 2DRMP, as

described in Section 3, is located in the DOC/ subdirectory.



2446 N.S. Scott et al. / Computer Physics Communications 180 (2009) 2424–2449

4.2. Test runs

The test run selected is for the small but illustrative case of electron scattering from hydrogen, where the hydrogen atom is approx-

imated by its physical n = 4 states, 1s,2s,3s,4s,2p,3p,4p,3d,4d, and 4 f , and augmented by numerical pseudo-states with l 6 4 and

5 6 n 6 20, as defined by Eqs. (67)–(68b).

The physical states are known exactly and are required to be read in as analytic functions of the form, Pnl(r) =
∑

i=1,nt coef [i] ∗ rirad[i] ∗
e−alpha∗r , with 0 6 l 6 min(lbndmax,nbound− 1) and l+ 1 6 n 6 nbound. Here, lbndmax, the maximum orbital angular momentum of the

target states, is 4, nbmdmax, the maximum principal quantum number momentum of the target states, is 20 and nbound, the maximum

principal quantum number of the physical target-state orbitals, is 4. The R-matrix boundary radius, ra , chosen to envelope the physical

states, is taken as 60 a.u.

The internal region is subdivided as illustrated in Fig. 4, with each subregion being a square with sides of length 15 a.u. This gives four

strips and 16 subregions. However, because of the symmetry of the internal region we only need consider the 10 subregions on and below

the diagonal. In each subregion we use a maximum of 20 basis functions for each angular momentum (nmax). For each total two-electron

orbital angular momentum, L, the maximum angular momentum of the one-electron basis functions in each subregion (lmax) in an n = 4

approximation is taken as L + 4. For computational ease we consider the two-electron system to be in the 1Se state, for which lmax is

therefore 4. Sixty-four equally spaced scattering energies, between 1.0 and 2.575 inclusive are computed. This is chosen to enable direct

comparison with the e-H 1Se 1s → 2s excitation cross section published in Table 3 of [32].

The data corresponding to this scenario can be found in the file input.dat. The format of this file is described in Appendix A.

For the purposes of this these test runs it is assumed that a small parallel system with 16 cores is available. Output from test runs

performed on the Queen’s University HP cluster [47] can be found in subdirectory /TEST_OUTPUT.21

(1) Block A programs (bp, rint2).

(a) Invoke the job submission script run_bp_rint2 to execute the two Block A programs in Fig. 5, bp and rint2.

(b) On completion, two output text files, bp.out and rint2.out, should be found in the subdirectory Log/. Check the validity of their

output by executing the comparison script,

$ cd TEST_OUTPUT

$./compare bp_rint2

$ cd..

(c) Check that the binary data files, aij, borbX, sintgtX and sintltX, where X = 01,02 . . .04 have been created in subdirectory Sec-

tor_Data/.

(2) Block B programs (newrd, diag, amps).

(a) Invoke the job submission script run_newrd2amps_2mpi. In this script 16 cores are reserved and 4 cores are devoted to each

subregion in newrd and diag. Accordingly, groups of up to 4 subregions from the 10 are computed simultaneously. The subre-

gions to be considered, and the order of consideration, is defined by the data file sectors.dat. The data files grid.data.newrd and

grid.data.diag define the number of cores per subregion and their respective topologies.22 The program amps operates with one

core per subregion.

(b) On completion, the output text files, newrdX.o, diagX.o and ampsX.o, where X = 000,001, . . .009, should be located in subdirectory

Log/. Check the validity of their output by executing the comparison script,

$ cd TEST_OUTPUT

$./compare newrd2amps_2mpi

$ cd..

(c) Check that the binary data files, rdataZ, rhmatZW, hdiagZ and rinVU, ampVU, where Z = 000,001, . . .009, W = 00,01, . . .03, V =
01,02, . . .04, and U = 01 . . . V , have been created in subdirectory Sector_Data/.

(3) Block C program (prop).

(a) Invoke the job submission script run_prop2mpi. The propagation program will be executed for the 64 equally spaced scattering

energies, between 1.0 and 2.575 inclusive, as defined in the file energies.data. In this script 16 cores are reserved and 4 cores are

devoted to each propagation. Thus each group of 4 cores will cycle serially through 16 energies, each energy propagation being

computed in parallel.

(b) Check the validity of their output by executing the comparison script,

$ cd TEST_OUTPUT

$./compare prop_2mpi

$ cd..

(c) Check that the binary output files, H and Rmat00x, x = 0,63, are generated and stored in subdirectory propfarm/.

(4) Block D program (farm).

(a) Invoke the job submission the script run_farm_par. In this script 16 cores are used to compute the 64 scattering energies, between

1.0 and 2.575 inclusive, as defined in the file, input.d.

21 It is expected that digits in positions 7 and 8, in many output files, will differ across machines and compilers.
22 2× 2 in this case.
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(5) Check of the final results.

(a) Invoke the script,

$./create_text_files 1025

This script has been provided to facilitate checking of the final cross section results. When this script is executed, output from farm_par

is concatenated into a single file farm.out, and all files within propfarm/ are moved to propfarm/1025/. Within this new directory the

file farm.out is interrogated and the cross section results for transitions, 1s → 1s,2s,2p,3s,3p,3d,4s and 2p → 4d, deposited in the

following text files: 1s1s.txt, 1s2s.txt, 1s2p.txt, 1s3s.txt, 1s3p.txt, 1s3d.txt, 1s4s.txt and 2p4d.txt. The energies at which these cross sections

are evaluated are copied to energies.txt.

(6) Check the validity of the final results by executing the comparison script,

$ cd TEST_OUTPUT

$./compare farm_par

$ cd..

Similar test runs can be performed for serial computation using the job submission scripts run_newrd2amps, run_prop and run_farm and for

parallel computation, where one core is devoted to each subregion in Block C and to a subrange of propagation energies in Block D, using

run_newrd2amps_1mpi and run_prop_1mpi respectively. Corresponding test run output and comparison scripts are included in subdirectory

/TEST_OUTPUT.23

5. Concluding remarks

In large scale virtual experiments, involving 200+ sectors, a load imbalance between the construction of the Hamiltonian matrix on

diagonal and off-diagonal sectors may be observed. The root of the bottleneck is the large number of two-dimensional radial integrals, the

so-called Slater integrals, that are required on each diagonal sector. The problem can be solved using the hand crafted quadrature formula

reported in [48]. An enhanced version of 2DRMP including this feature, together with the incorporation of model potentials to extend the

target to quasi one-electron atoms and ions, is under development.
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Appendix A. The input file input.dat

(1) nstrip, rbnd

nstrip: the number of strips in the inner region.

rbnd: the radius, ra , of the inner region in a.u., rbnd=nstrip*blksize.

See Fig. 1.

(2) lbndmax, nbndmax

lbndmax: the maximum orbital angular momentum of the target states.

nbndmax: the maximum principal quantum number of the target states.

See Eqs. (67)–(68b).

(3) ltot, istot, npty, nz

ltot: the total orbital angular momentum (L) of the 2-electron system.

istot: the total spin (S) of the 2-electron system.

npty: the total parity of the 2-electron system.

nz: the nuclear charge of the target atom.

See Eq. (3).

(4) npts

npts: the number of integration points, which must be odd, in each subregion.

(5) nmax, lmax

nmax: the maximum principal quantum number of the basis orbitals.

lmax: the maximum orbital angular momentum quantum number of the basis orbitals.

See Eq. (14).

(6) nbound

nbound: the maximum principal quantum number of the physical target-state orbitals, see Section 2.4.

(7) The analytic expansion of the target-state orbitals, i.e. Pnl(r) =
∑

i=1,nt coef [i] ∗ rirad[i] ∗ e−alpha∗r , see Section 2.4.

23 Output from run_newrd2amps should be identical to output from run_newrd2amps_1mpi and output from run_prop should be identical to output from run_prop_1mpi.
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do l=0, min(lbndmax,nbound-1)

do n=l+1,nbound

nt

(irad(l,n,i),i=1,nt)

(coef(l,n,i),i=1,nt)

alpha(l,n)

end do

end do

Appendix B. The input file sectors.dat

(1) nsectors

(2) do i=0,nsectors-1

sector_id

enddo

nsectors: The number of subregions to be considered.

sector_id: the subregion identifier.

Appendix C. The input file grid.data

(1) row_block_factor

row_block_factor: the block-cyclic row blocking factor, not used in NEWRD.

(2) column_block_factor

column_block_factor: the block-cyclic column blocking factor, not used in NEWRD.

(3) grid_rows

grid_rows: the number of rows in the grid of cores.

(4) grid_columns

grid_columns: the number of columns in the grid of cores.

Appendix D. The input file energies.data

(1) initial_energy

initial_energy: initial scattering energy in Rydbergs.

(2) final_energy

final_energy: final scattering energy in Rydbergs.

(3) energy_increment

energy_increment: scattering energy increment in Rydbergs.

(4) target_energy

target_energy: ground state energy of the target in atomic units.
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