2,633 research outputs found
Intravenous conscious sedation in patients under 16 years of age. Fact or fiction?
Recently published guidelines on the use of conscious sedation in dentistry have published varying recommendations on the lower age limit for the use of intravenous conscious sedation. There are a large number of dentists currently providing dental treatment for paediatric patients under intravenous conscious sedation. The 18 cases reported here (age range 11-15 years), were successfully managed with intravenous conscious sedation. The experience in this paper is not sufficient evidence to recommend the wholesale use of intravenous conscious sedation in patients who are under 16 years. The fact that a range of operators can use these techniques on paediatric patients would suggest that further study should be carried out in this population. The guidance should be modified to say there is insufficient evidence to support the use of intravenous conscious sedation in children, rather than arbitrarily selecting a cut off point at age 16 years
Classical and quantum chaos in a circular billiard with a straight cut
We study classical and quantum dynamics of a particle in a circular billiard
with a straight cut. This system can be integrable, nonintegrable with soft
chaos, or nonintegrable with hard chaos, as we vary the size of the cut. We use
a quantum web to show differences in the quantum manifestations of classical
chaos for these three different regimes.Comment: LaTeX2e, 8 pages including 3 Postscript figures and 4 GIF figures,
submitted to Phys. Rev.
Sequential superradiant scattering from atomic Bose-Einstein condensates
We theoretically discuss several aspects of sequential superradiant
scattering from atomic Bose-Einstein condensates. Our treatment is based on the
semiclassical description of the process in terms of the Maxwell-Schroedinger
equations for the coupled matter-wave and optical fields. First, we investigate
sequential scattering in the weak-pulse regime and work out the essential
mechanisms responsible for bringing about the characteristic fan-shaped
side-mode distribution patterns. Second, we discuss the transition between the
Kapitza-Dirac and Bragg regimes of sequential scattering in the strong-pulse
regime. Finally, we consider the situation where superradiance is initiated by
coherently populating an atomic side mode through Bragg diffraction, as in
studies of matter-wave amplification, and describe the effect on the sequential
scattering process.Comment: 9 pages, 4 figures. Submitted to Proceedings of LPHYS'06 worksho
RNA Polymerase Pausing during Initial Transcription
In bacteria, RNA polymerase (RNAP) initiates transcription
by synthesizing short transcripts that are
either released or extended to allow RNAP to escape
from the promoter. The mechanism of initial transcription
is unclear due to the presence of transient
intermediates and molecular heterogeneity. Here,
we studied initial transcription on a lac promoter
using single-molecule fluorescence observations
of DNA scrunching on immobilized transcription
complexes. Our work revealed a long pause (‘‘initiation
pause,’’ �20 s) after synthesis of a 6-mer RNA;
such pauses can serve as regulatory checkpoints.
Region sigma 3.2, which contains a loop blocking
the RNA exit channel, was a major pausing determinant.
We also obtained evidence for RNA backtracking
during abortive initial transcription and for
additional pausing prior to escape. We summarized
our work in a model for initial transcription, in which
pausing is controlled by a complex set of determinants
that modulate the transition from a 6- to a
7-nt RNA
Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung
Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation
Structure of Colloid-Polymer Suspensions
We discuss structural correlations in mixtures of free polymer and colloidal
particles based on a microscopic, 2-component liquid state integral equation
theory. Whereas in the case of polymers much smaller than the spherical
particles the relevant polymer degree of freedom is the center of mass, for
polymers larger than the (nano-) particles conformational rearrangements need
to be considered. They have the important consequence that the polymer
depletion layer exhibits two widely different length scales, one of the order
of the particle radius, the other of the order of the polymer radius or the
polymer density screening length in dilute or semidilute concentrations,
respectively. Their consequences on phase stability and structural correlations
are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl
Determination of the freeze-out temperature by the isospin thermometer
The high-resolution spectrometer FRS at GSI Darmstadt provides the full
isotopic and kinematical identification of fragmentation residues in
relativistic heavy-ion collisions. Recent measurements of the isotopic
distribution of heavy projectile fragments led to a very surprising new
physical finding: the residue production does not lose the memory of the N/Z of
the projectile ending up in a universal de-excitation corridor; an ordering of
the residues in relation to the neutron excess of the projectile has been
observed. These unexpected features can be interpreted as a new manifestation
of multifragmentation. We have found that at the last stage of the reaction the
temperature of the big clusters subjected to evaporation is limited to a
universal value. The thermometer to measure this limiting temperature is the
neutron excess of the residues.Comment: 8 pages, 6 figures, corrected some misprints in the abstract, to be
published in "Yadernaya Fizika" as a proceeding of the "VII International
School Seminar on Heavy-Ion Phyics", Dubna (Russia), May 27 - June 1, 200
WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components
In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth
Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the
XMM-Newton satellite, to study its emission properties. The source was
monitored in the optical-to-radio bands by 37 telescopes. The brightness level
was relatively low. Some episodes of very fast variability were detected in the
optical bands. The X-ray spectra are well fitted by a power law with photon
index of about 2 and photoelectric absorption exceeding the Galactic value.
However, when taking into account the presence of a molecular cloud on the line
of sight, the data are best fitted by a double power law, implying a concave
X-ray spectrum. The spectral energy distributions (SEDs) built with
simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations
suggest that the peak of the synchrotron emission lies in the near-IR band, and
show a prominent UV excess, besides a slight soft-X-ray excess. A comparison
with the SEDs corresponding to previous observations with X-ray satellites
shows that the X-ray spectrum is extremely variable. We ascribe the UV excess
to thermal emission from the accretion disc, and the other broad-band spectral
features to the presence of two synchrotron components, with their related SSC
emission. We fit the thermal emission with a black body law and the non-thermal
components by means of a helical jet model. The fit indicates a disc
temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&
Catalog of Galactic Beta Cephei Stars
We present an extensive and up-to-date catalog of Galactic Beta Cephei stars.
This catalog is intended to give a comprehensive overview of observational
characteristics of all known Beta Cephei stars. 93 stars could be confirmed to
be Beta Cephei stars. For some stars we re-analyzed published data or conducted
our own analyses. 61 stars were rejected from the final Beta Cephei list, and
77 stars are suspected to be Beta Cephei stars. A list of critically selected
pulsation frequencies for confirmed Beta Cephei stars is also presented. We
analyze the Beta Cephei stars as a group, such as the distributions of their
spectral types, projected rotational velocities, radial velocities, pulsation
periods, and Galactic coordinates. We confirm that the majority of these stars
are multiperiodic pulsators. We show that, besides two exceptions, the Beta
Cephei stars with high pulsation amplitudes are slow rotators. We construct a
theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are
MS objects. We discuss the observational boundaries of Beta Cephei pulsation
and their physical parameters. We corroborate that the excited pulsation modes
are near to the radial fundamental mode in frequency and we show that the mass
distribution of the stars peaks at 12 solar masses. We point out that the
theoretical instability strip of the Beta Cephei stars is filled neither at the
cool nor at the hot end and attempt to explain this observation
Fake Supergravity and Domain Wall Stability
We review the generalized Witten-Nester spinor stability argument for flat
domain wall solutions of gravitational theories. Neither the field theory nor
the solution need be supersymmetric. Nor is the space-time dimension
restricted. We develop the non-trivial extension required for AdS-sliced domain
walls and apply this to show that the recently proposed "Janus" solution of
Type IIB supergravity is stable non-perturbatively for a broad class of
deformations. Generalizations of this solution to arbitrary dimension and a
simple curious linear dilaton solution of Type IIB supergravity are byproducts
of this work.Comment: 37 pages, 3 figures, v2: minor corrections, references and
acknowledgments adde
- …
