110 research outputs found

    Maastrichtian

    Get PDF
    The stratotype of the Maastrichtian Stage named by the Belgian geologist André Dumont in 1849 is situated in the Netherlands at the St Pietersberg.The original description of the "Maastricht Limestone"? is quoted and the successive historical interpretations of the Maastrichtian Stage are outlined. The Maastrichtian Stage in Belgium is then presented in three areas: the Liège-Limburg region, the Mons Basin, and outliers at Orp-Jauche, Orp-le-Petit, as well as Hockai and some other Hautes Fagnes outcrops

    Biostratigraphy and events at the Campanian-Maastrichtian Boundary

    Get PDF
    Problems related to stages, bioevents, ecoevents and stage boundaries as well as their mutual relationships are briefly discussed. Subsequently, a review is made of the data on the Campanian-Maastrichtian boundary as currently accepted and defined in the Boreal and Tethyan realms

    The Cretaceous-Palaeogene (K/P) boundary in the Aïn Settara section (Kalaat Senan, Central Tunisia): lithological, micropalaeontological and geochemical evidence

    Get PDF
    The Cretaceous-Palaeogene (K/P) boundary, until recently known as the "Cretaceous-Tertiary" or K/T boundary, is well exposed at Aïn Settara in the Kalaat Senan area (Central Tunisia), 50 km south of the El Kef section. Micropalaeontological and geochemical studies led to the identification of six main features tentatively named "events", which characterise the K/P boundary interval, and of which at least two (B and C) have global significance. The lowermost event A located at about 14 cm below the base of the Dark Boundary Clay is marked by a sudden increase in tiny bioturbations, by small nodules and a few macrofossils, a 50% drop in calcareous nannofossil abundance and an increase in Scytinascias (organic linings of foraminifera). It is thought to witness a slowdown in sedimentation. Event B is characterised by a burrowed surface, separating the ca 60-cm thick Dark Boundary Clay from the underlying Aïn Settara marls. It indicates an episode of nondeposition, just before a major change in lithology from marls to clays, corresponding to a major flooding. No substantial palaeontological changes have been recorded in relation to this event. Event C is characterised by maximum concentrations of Ir and Ni-rich spinels, which have been observed in platy nodules, similar to the level at El Kef (K/P boundary sensu ODIN, 1992). It coincides with a major extinction in planktonic foraminiferal species (71%) and a 60% drop in nannofossil abundance. The change in lithology (occurrence of small ripples and channel-like structures) recorded at event D, a few cm up-section, might be related to a locally recorded storm activity. Events E and F, which are situated higher up in the Dark Boundary Clay, are mainly determined by palaeontological changes (palynomorphs and nannofossils), probably resulting from small sea-level variations. The coincidence of the cosmic markers with the major biotic changes at event C pleads for the asteroid impact hypothesis. Their disjunction from the base of the Dark Boundary Clay shows that the change of lithology usually used to determine the K-P boundary is distinct from the major extinction (in the planktonic realm), classically referred to this boundary and linked to the presence of cosmic markers. These results argue the need for the revaluation of the K-P boundary GSSP at El Kef. It is suggested to redefine the K-P boundary at the level of coincidence of the major biotic changes and the cosmic markers

    L’Artois, des crêtes très convoitées

    No full text
    International audienc

    New biostratigraphic data from Cretaceous planktic foraminifera in Sahlabad province, eastern Iran

    No full text
    The foraminiferal content of two stratigraphic sections, located in eastern Iran within the Sahlabad province, between the Lut and Afghan blocks and ranging in age from Turonian to Campanian is investigated. Previous studies were general and only indicated the presence of planktonic foraminifera in this province. This paper presents a detailed study of planktonic foraminifera of the Shirshotor unit and establishes for the first time a local biostratigraphy consisting of five biozones. Biozones from the upper Turonian to lower Campanian are recognized, but the upper lower Campanian to lower upper Campanian strata are missing, as demonstrated by the lack of the Globotruncana ventricosa biozone. Tectonic activity in this region during the late early Campanian and mid-Campanian resulted in the presence of an unconformity together with debrites (debris flow deposits) in the lower upper Campanian. About twenty-five planktonic foraminiferal species are reported and illustrated. The largest faunal diversity is encountered in the upper Santonian. The planktonic foraminiferal biozones are precisely defined in selected stratigraphic sections and allow age determinations for the deepest marine sediments (pelagic limestones and bedded cherts) before the collision of the Lut and Afghan blocks

    The late late Albian (Mortoniceras fallax zone) Cephalopod Fauna from the Bracquegnies Formation at Strepy-Thieu (Hainaut, southern Belgium)

    No full text
    Excavations in 1989-1990 for the construction of a boat lift near the villages of Strépy and Thieu, east of Mons (province of Hainaut, southern Belgium), exposed a 40-metre section of the Bracquegnies Formation (Haine Green Sandstone Group; the 'Meule de Bracquegnies' of previous authors). Several hundred well-preserved, silicified cephalopods were collected from between 15 and 35 metres above the base of the sequence temporarily exposed there. The fauna is: Eutrephoceras clementianum (d'Orbigny, 1840), Puzosia (Puzosia) mayoriana (d'Orbigny, 1841), Callihoplites tetragonus (Seeley, 1865), Discohoplites valbonnensis valbonnensis (Hébert and Munier-Chalmas, 1875), Cantabrigites cantabrigense Spath, 1933, Mortoniceras (Mortoniceras) fallax (Breistroffer, 1940), M. (M.) nanum Spath, 1933, Neophlycticeras (Neophlyeticeras) blancheti (Pictet and Campiche, 1859), Stoliczkaia (Stoliczkaia) notha (Seeley, 1865), Anisoceras armatum (J. Sowerby, 1817), Hamites subvirgulatus Spath, 1941, Lechites (Lechites) gaudini (Pictet and Campiche, 1861) and Scaphites (Scaphites) sp. juv. This assemblage is the first extensive fauna from the Mortoniceras (Mortoniceras) fallax Zone of the upper Upper Albian to be described from an expanded section. The assemblage is dominated by specimens referred to a highly variable, dimorphic Callihoplites tetragonus (> 250 specimens studied), of which many of the forms of Callihoplites described by Spath (1928) from the remanié Late Albian fauna at the base of the Lower Cenomanian Cambridge Greensand in eastern England are shown to be no more than intraspecific variants

    Ammonite faunas from condensed Cenomanian-Turonian sections ('tourtias') in southern Belgium and northern France

    Get PDF
    In southern Belgium (Mons Basin and Tournai region) and northern France (area between Lille, Valenciennes and Maubeuge), condensed sequences have been referred to as 'tourtias' since the start of the nineteenth century. These levels correspond to a succession of trangressive systems tracts and generally appear as dark green, glauconitic and microconglomeratic facies. They are distributed all along the base of the more important transgressive systems tracts of the Cenomanian and basal Turonian from the Boulonnais (northwest France) to the Mons Basin (southern Belgium), through the Artois and Douaisis. Their age can now be determined more accurately by identification of their ammonite content, as housed in museums such as the Institut royal des Sciences naturelles de Belgique (IRScNB, Brussels) and the Musee d'Histoire naturelle de Lille (MHNL). Here material from the IRScNB collections is described, illustrated and discussed; specimens contained in the MHNL collections were described in a previous paper
    corecore