31 research outputs found

    Biventricular function in exercise during autonomic (thoracic epidural) block

    Get PDF
    Background Blockade of cardiac sympathetic fibers by thoracic epidural anesthesia (TEA) was previously shown to reduce right and left ventricular systolic function and effective pulmonary arterial elastance. At conditions of constant paced heart rate, cardiac output and systemic hemodynamics were unchanged. In this study, we further investigated the effect of cardiac sympathicolysis during physical stress and increased oxygen demand. Methods In a cross-over design, 12 patients scheduled to undergo thoracic surgery performed dynamic ergometric exercise tests with and without TEA. Hemodynamics were monitored and biventricular function was measured by transthoracic two-dimensional and M-mode echocardiography, pulsed wave Doppler and tissue Doppler imaging. Results TEA attenuated systolic RV function (TV SMODIFIER LETTER PRIME: - 21%, P < 0.001) and LV function (MV SMODIFIER LETTER PRIME: - 14%, P = 0.025), but biventricular diastolic function was not affected. HR (- 11%, P < 0.001), SVI (- 15%, P = 0.006), CI (- 21%, P < 0.001) and MAP (- 12%, P < 0.001) were decreased during TEA, but SVR was not affected. Exercise resulted in significant augmentation of systolic and diastolic biventricular function. During exercise HR, SVI, CI and MAP increased (respectively, + 86%, + 19%, + 124% and + 17%, all P < 0.001), whereas SVR decreased (- 49%, P < 0.001). No significant interactions between exercise and TEA were found, except for RPP (P = 0.024) and MV E DT (P = 0.035). Conclusion Cardiac sympathetic blockade by TEA reduced LV and RV systolic function but did not significantly blunt exercise-induced increases in LV and RV function. These data indicate that additional mechanisms besides those controlled by the cardiac sympathetic nervous system are involved in the regulation of cardiac function during dynamic exercise

    PReVENT - protective ventilation in patients without ARDS at start of ventilation: study protocol for a randomized controlled trial

    Get PDF
    Background It is uncertain whether lung-protective mechanical ventilation using low tidal volumes should be used in all critically ill patients, irrespective of the presence of the acute respiratory distress syndrome (ARDS). A low tidal volume strategy includes use of higher respiratory rates, which could be associated with increased sedation needs, a higher incidence of delirium, and an increased risk of patient-ventilator asynchrony and ICU-acquired weakness. Another alleged side-effect of low tidal volume ventilation is the risk of atelectasis. All of these could offset the beneficial effects of low tidal volume ventilation as found in patients with ARDS. Methods/Design PReVENT is a national multicenter randomized controlled trial in invasively ventilated ICU patients without ARDS with an anticipated duration of ventilation of longer than 24 hours in 5 ICUs in The Netherlands. Consecutive patients are randomly assigned to a low tidal volume strategy using tidal volumes from 4 to 6 ml/kg predicted body weight (PBW) or a high tidal volume ventilation strategy using tidal volumes from 8 to 10 ml/kg PBW. The primary endpoint is the number of ventilator-free days and alive at day 28. Secondary endpoints include ICU and hospital length of stay (LOS), ICU and hospital mortality, the incidence of pulmonary complications, including ARDS, pneumonia, atelectasis, and pneumothorax, the cumulative use and duration of sedatives and neuromuscular blocking agents, incidence of ICU delirium, and the need for decreasing of instrumental dead space. Discussion PReVENT is the first randomized controlled trial comparing a low tidal volume strategy with a high tidal volume strategy, in patients without ARDS at onset of ventilation, that recruits a sufficient number of patients to test the hypothesis that a low tidal volume strategy benefits patients without ARDS with regard to a clinically relevant endpoin

    Vasoresponsiveness in patients with heart failure (VASOR): protocol for a prospective observational study

    Get PDF
    BACKGROUND: Vasoplegia is a severe complication which may occur after cardiac surgery, particularly in patients with heart failure. It is a result of activation of vasodilator pathways, inactivation of vasoconstrictor pathways and the resistance to vasopressors. However, the precise etiology remains unclear. The aim of the Vasoresponsiveness in patients with heart failure (VASOR) study is to objectify and characterize the altered vasoresponsiveness in patients with h

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore