38 research outputs found

    Resilience of Epiphytic Lichens to Combined Effects of Increasing Nitrogen and Solar Radiation

    Get PDF
    Lichens are classified into different functional groups depending on their ecological and physiological response to a given environmental stressor. However, knowledge on lichen response to the synergistic effect of multiple environmental factors is extremely scarce, although vital to get a comprehensive understanding of the effects of global change. We exposed six lichen species belonging to different functional groups to the combined effects of two nitrogen (N) doses and direct sunlight involving both high temperatures and ultraviolet (UV) radiation for 58 days. Irrespective of their functional group, all species showed a homogenous response to N with cumulative, detrimental effects and an inability to recover following sunlight, UV exposure. Moreover, solar radiation made a tolerant species more prone to N pollution’s effects. Our results draw attention to the combined effects of global change and other environmental drivers on canopy defoliation and tree death, with consequences for the protection of ecosystems.info:eu-repo/semantics/publishedVersio

    Non-Toxic Increases in Nitrogen Availability Can Improve the Ability of the Soil Lichen Cladonia rangiferina to Cope with Environmental Changes

    Get PDF
    Climate change and atmospheric nitrogen (N) deposition on drylands are greatly threatening these especially vulnerable areas. Soil biocrust-forming lichens in drylands can provide early indicators of these disturbances and play a pivotal role, as they contribute to key ecosystem services. In this study, we explored the effects of different long-term water availability regimes simulating climate changes and their interaction with N addition on the physiological response of the soil lichen Cladonia rangiferina. Three sets of this lichen were subjected to control, reduced watering, and reduced watering and N addition (40 kg NH4NO3 ha−1 year−1) treatments for 16 months. Finally, all samples were subjected to daily hydration cycles with N-enriched water at two levels (40 and 80 kg NH4NO3 ha−1 year−1) for 23 days. We found that reduced watering significantly decreased the vitality of this lichen, whereas N addition unexpectedly helped lichens subjected to reduced watering to cope with stress produced by high temperatures. We also found that long-term exposure to N addition contributed to the acclimation to higher N availability. Overall, our data suggest that the interactions between reduced watering and increased N supply and temperature have an important potential to reduce the physiological performance of this soil lichen.info:eu-repo/semantics/publishedVersio

    A transparent TMPyP/TiO2 composite thin film as an HCl sensitive optochemical gas sensor

    Get PDF
    Tetracationic porphyrin (TMPyP) molecules were incorporated into an optically transparent TiO2 thin film, prepared by Glancing Angle Physical Vapour Deposition (GAPVD), by simple infiltration (at pH 6.4). The preparation of optically transparent TMPyP/TiO2 composite thin films provides a method for the integration of the porphyrin molecules into photonic devices for direct monitoring of gases. Previously, UV-visible and fluorescence spectral techniques have been used to study the reversible protonation of TMPyP in aqueous solution. The optical spectrum of TMPyP shows an intense Soret band at 423 nm with a 22 nm red shift upon protonation by HCl. The experimental conditions for monitoring the concentration of HCl gas by absorption spectroscopy have been optimized. The maximum absorbance change was observed at the Soret band wavelength. A selected temperature of 80 °C and a 300 s recovery period were found to be the optimum operating parameters (response time t50 = 16.8 ± 0.7 s). The composite with smaller surface concentration of TMPyP (¿ = 0.3 × 10-9 mol cm -2) presented the best detection limit (0.1 ppm). The response of the composite sensor was highly stable for several months.Ministerio de Educación y Ciencia PET2007 0363 01/ 02, TEC201021830C0201, CSD20070000

    Uso de reactivos colorimétricos como marcadores químicos con importante aplicación industrial.

    Get PDF
    Colorimetry is a technique used to measure and analyse colours, mainly to determine the concentration of colored compounds in solutions by the application of the Beer–Lambert law. It is applied in a variety of fields, such as chemistry, medicine, biology, and in the pharmaceutical and food industries. The basis of this technique is often the use of colorimetric reagents that provide an easily identifiable colour that depends on factors both internal and external to the samples. These reagents are usually pigments that vary in colour depending on the conditions to which they are subjected. In addition, they can interact with the packaging or the environment in which they are placed. The stimulated colour response becomes a practical tool to assess in real time the status of products in the distribution chain. This is why pigments modulated by other reagents have been applied to measure the colour change of samples applicable to products as quality markers.Pigments and the modulator have been prepared in a hand-made device of plastic nature. The colour change reaction of the pigment has been characterised at different temperatures using water baths and the influence of movement on the sample has been measured by means of orbital shaking. The colour change of the pigment has been measured by means of an RGB device and UV-vis spectrophotometry. Subsequently, real trials will be carried out with volunteers to test the effectiveness of the colourimetric device attached to a product.It has been observed that the reaction kinetics is temperature-dependent. The higher the temperature the shorter the reaction time. The reaction time ranged from 3 to 14 hours at temperatures of 40°C down to 5°C. Stirring does not influence the reaction time.Compounds such as pigments, once modulated, can be an effective tool for monitoring product quality quite accurately. Once the reactants ratios are adjusted to the shelf life of the products, their reliability increases considerably, bringing benefits to the final consumer.NOTE: This work is bound by confidentiality in the framework of a research contract

    Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO2 Composite Thin Films

    Get PDF
    Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV–vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation–deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film.We thank the Junta de Andalucía (Project: FQM-2310), the European Regional Development Funds program (EU-FEDER) and the Spanish Ministry of Economy and Competitiveness (Projects: MAT2013-40852-R, MAT2013-42900-P, MAT2014-57652-C2-2-R, MAT2015-69035-REDC, MINECO-CSIC 201560E055, PCIN-2015-169-C02-02 under a 2014 M-Era.Net project and RECUPERA 2020), for financial support. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)

    Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films

    Get PDF
    Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV–vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation–deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film.Junta de Andalucía FQM-2310EU-FEDERMinisterio de Economía y Competitividad MAT2013-42900-P MAT2014-57652-C2-2-R MAT2015-69035-REDC MINECO-CSIC 201560E055 PCIN-2015-169-C02-0

    Nitrogen Deposition Effects on Soil Properties, Microbial Abundance, and Litter Decomposition Across Three Shrublands Ecosystems From the Mediterranean Basin

    Get PDF
    Atmospheric nitrogen (N) inputs in the Mediterranean Basin are projected to increase due to fossil fuel combustion, fertilizer use, and the exacerbation of agricultural production processes. Although increasing N deposition is recognized as a major threat to ecosystem functioning, little is known about how local environmental conditions modulate ecosystem function response to N addition, particularly in the context of Mediterranean-Basin ecosystems. Here, we assess how N addition affects important ecosystem properties associated with litter decomposition, soil physical-chemical properties, soil extracellular enzymatic activity and microbial abundance across three long-term N addition experimental sites in the Mediterranean Basin. Sites were located in El Regajal (Madrid, Spain), Capo Caccia (Alghero, Italy), and Arrábida (Lisbon, Portugal) and are all representative of Mediterranean shrublands. No common pattern for litter decomposition process or other studied variables emerged among the control plots of the studied sites. Nitrogen supply only affected soil pH, a major driver of decomposition, in two out of three experimental sites. Moreover, when we explored the role of N addition and soil pH in controlling litter decay, we found that the effects of these factors were site-dependent. Our results point out to local ecosystem features modulating N addition effects in controlling litter decomposition rates in Mediterranean ecosystems, suggesting that the responses of soil functioning to N deposition are site-dependent. These findings provide further knowledge to understand contrasting ecosystem responses to N additions based on a single field experiments

    Nitrogen deposition effects on soil properties, microbial abundance, and litter decomposition across three shrublands ecosystems from the Mediterranean Basin

    Get PDF
    Atmospheric nitrogen (N) inputs in the Mediterranean Basin are projected to increase due to fossil fuel combustion, fertilizer use, and the exacerbation of agricultural production processes. Although increasing N deposition is recognized as a major threat to ecosystem functioning, little is known about how local environmental conditions modulate ecosystem function response to N addition, particularly in the context of Mediterranean-Basin ecosystems. Here, we assess how N addition affects important ecosystem properties associated with litter decomposition, soil physical-chemical properties, soil extracellular enzymatic activity and microbial abundance across three long-term N addition experimental sites in the Mediterranean Basin. Sites were located in El Regajal (Madrid, Spain), Capo Caccia (Alghero, Italy), and Arrábida (Lisbon, Portugal) and are all representative of Mediterranean shrublands. No common pattern for litter decomposition process or other studied variables emerged among the control plots of the studied sites. Nitrogen supply only affected soil pH, a major driver of decomposition, in two out of three experimental sites. Moreover, when we explored the role of N addition and soil pH in controlling litter decay, we found that the effects of these factors were site-dependent. Our results point out to local ecosystem features modulating N addition effects in controlling litter decomposition rates in Mediterranean ecosystems, suggesting that the responses of soil functioning to N deposition are sitedependent. These findings provide further knowledge to understand contrasting ecosystem responses to N additions based on a single field experiments

    Lichen as Multipartner Symbiotic Relationships

    No full text
    Lichens have long been considered as composite organisms composed of algae and/or cyanobacteria hosted by a fungus in a mutualistic relationship. Other organisms have been gradually discovered within the lichen thalli, such as multiple algal species, yeasts, or even viruses. Of pivotal relevance is the existence of the lichen microbiome, which is a community of microorganisms that can be found living together on the lichen surface. This community performs a growing number of functions. In this entry, we explore the journey of lichens being considered from a dual partnership to a multi-species symbiotic relationship
    corecore