1,745 research outputs found

    Turbulence Hierarchy in a Random Fibre Laser

    Get PDF
    Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here, we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold, and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov's theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform.Comment: 9 pages, 5 figure

    Real-time observations of single bacteriophage λ DNA ejections in vitro

    Get PDF
    The physical, chemical, and structural features of bacteriophage genome release have been the subject of much recent attention. Many theoretical and experimental studies have centered on the internal forces driving the ejection process. Recently, Mangenot et al. [Mangenot S, Hochrein M, Rädler J, Letellier L (2005) Curr Biol 15:430–435.] reported fluorescence microscopy of phage T5 ejections, which proceeded stepwise between DNA nicks, reaching a translocation speed of 75 kbp/s or higher. It is still unknown how high the speed actually is. This paper reports real-time measurements of ejection from phage {lambda}, revealing how the speed depends on key physical parameters such as genome length and ionic state of the buffer. Except for a pause before DNA is finally released, the entire 48.5-kbp genome is translocated in {approx}1.5 s without interruption, reaching a speed of 60 kbp/s. The process gives insights particularly into the effects of two parameters: a shorter genome length results in lower speed but a shorter total time, and the presence of divalent magnesium ions (replacing sodium) reduces the pressure, increasing ejection time to 8–11 s. Pressure caused by DNA–DNA interactions within the head affects the initiation of ejection, but the close packing is also the dominant source of friction: more tightly packed phages initiate ejection earlier, but with a lower initial speed. The details of ejection revealed in this study are probably generic features of DNA translocation in bacteriophages and have implications for the dynamics of DNA in other biological systems

    Calculation of quantum discord for qubit-qudit or N qubits

    Get PDF
    Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual information and classical correlation in a bipartite system. It has been discussed so far for small systems with only a few independent parameters. We extend here to a much broader class of states when the second party is of arbitrary dimension d, so long as the first, measured, party is a qubit. We present two formulae to calculate quantum discord, the first relating to the original entropic definition and the second to a recently proposed geometric distance measure which leads to an analytical formulation. The tracing over the qubit in the entropic calculation is reduced to a very simple prescription. And, when the d-dimensional system is a so-called X state, the density matrix having non-zero elements only along the diagonal and anti-diagonal so as to appear visually like the letter X, the entropic calculation can be carried out analytically. Such states of the full bipartite qubit-qudit system may be named "extended X states", whose density matrix is built of four block matrices, each visually appearing as an X. The optimization involved in the entropic calculation is generally over two parameters, reducing to one for many cases, and avoided altogether for an overwhelmingly large set of density matrices as our numerical investigations demonstrate. Our results also apply to states of a N-qubit system, where "extended X states" consist of (2^(N+2) - 1) states, larger in number than the (2^(N+1) - 1) of X states of N qubits. While these are still smaller than the total number (2^(2N) - 1) of states of N qubits, the number of parameters involved is nevertheless large. In the case of N = 2, they encompass the entire 15-dimensional parameter space, that is, the extended X states for N = 2 represent the full qubit-qubit system.Comment: 6 pages, 1 figur

    Genetic evaluation of Hevea brasiliensis [(Willd ex Adr. de Juss.) Müell. Arg.] for juvenile vigour using the Reml/Blup method.

    Get PDF
    This paper intended to estimate genetic values and parameters for plant height, diameter at the base of the plant and leaf-storey number of rubber tree [Hevea brasiliensis (Willd ex Adr. de Juss.) Müell, Arg.] halfsib progenies using the míxed-model methodology (Reml/Blup procedure). The rubber tree progenies were obtained from a second generation population produced from the recombination of 30 original parents, pertaining to the Instituto Agronômico de Campinas (IAC) in São Paulo state. At the age of eight months the variables were evaluated. Results demonstrated the existence of significant genetic variability among the progenies for the studied traits. The estimates of the heritability coefficient showed moderate values for both height and leaf-storey number, and low values for plant diameter at the base of the plant. There are good possibilities of genetic gain for these main traits in the context of the improvement program that was started in Mato Grosso do Sul state

    The primary genepool of cassava (Manihot esculenta Crantz).

    Get PDF
    The cultivated genepool comprises all comercial stocks of the crop besides all ingenous landraces and folk varieties of the domesticate.Suplemento. Edição dos Resumos do IV International Scientific Meeting of the Cassava Biotechnology Network, Salvador,1998

    The primary gene pool of cassava (Manihot esculenta Crantz).

    Get PDF
    A crop gene pool comprises three distinct categories of gene suppliers, primary, secondary, and tertiary gene pools. The primary gene pool (GP-1) is composed of gene reservoirs that cross easily with the domesticate and the crosses produce fertile offspring regularly. The secondary (GP-2) and tertiary (GP-3) gene pools comprise gene sources that cross with variable degrees of diffilculty with the crop species, this implies less close genetic distances. The GP-1 is further subdivided in cultivated and wild gene pools. The cultivated gene pool englobes commercial stocks of the crop besides indigenous landraces and folk varieties of the domesticate. The wild GP-1 of a crop comprises putative ancestors and closely related species that show a fair degree of fertile relationships with the domesticate. Two Douth American wild subspecies of cassava (M. flabellifolia and M. peruviana) are natural members of the wild GP-1 of the species. Another Brazilian species (M. pruinosa) is so close morphologically to the two wild subspecies of cassava that it may turn out another member of the wild GP-1 of the indigen. The GP-2 of cassava is more difficult to delimit as few species have been tested for genetic compatibility. Biosystematic crosses carried out between the crop and a number of wild species suggest a dozen of them as components of the GP-2, the majority are Brazilian species
    • …
    corecore