187 research outputs found

    Growth of embryonal carcinoma cells in serum-free medium.

    Full text link

    Transformation induced by Ewing's sarcoma associated EWS/FLI-1 is suppressed by KRAB/FLI-1

    Get PDF
    Ewing's sarcoma is a childhood bone tumour with poor prognosis, most commonly associated with a t(11;22)(q24;q12) reciprocal translocation that fuses the EWS and FLI-1 genes, resulting in the production of an aberrant chimeric transcription factor EWS/FLI-1. To erucidate the mechanisms by which EWS/FLI-1 mediates transformation in mouse models, we have generated a murine Ews/Fli-1 fusion protein. We demonstrate that this protein transforms fibroblast celrs in vitro similar to human EWS/FLI-1 as demonstrated by serum and anchorage-independent growth, the formation of tumours in nude mice and elevation of the oncogenic marker c-myc. Furthermore, transformation of these cells was inhibited by a specific represser, KRAB/FLI-1. The KRAB/FLI-1 repressor also suppressed the tumorigenic phenotype of a human Ewing's sarcoma cell line. These findings suggest that the transformed phenotype of Ewing's sarcoma cells can be reversed by using the sequence-specific FLI-1-DNA-binding domain to target a gone repressor domain. The inhibition of EWS/FLI-1 is the first demonstration of the KRAB domain suppressing the action of an ETS factor. This approach provides potential avenues for the elucidation of the biological mechanisms of EWS/FLI-1 oncogenesis and the development of novel therapeutic strategies. © 2003 Cancer Research UK.link_to_subscribed_fulltex

    LIF-Dependent Signaling: New Pieces in the Lego

    Get PDF
    LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine

    Oral epithelial cell sheets engraftment for esophageal strictures after endoscopic submucosal dissection of squamous cell carcinoma and airplane transportation

    Get PDF
    Endoscopic submucosal dissection (ESD) permits en bloc removal of superficial oesophageal squamous cell carcinoma (ESCC). However, post-procedure stricture is common after ESD for widespread tumours, and multiple endoscopic balloon dilation (EBD) procedures are required. We aimed to evaluate the safety and effectiveness of endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets that had been transported by air over a distance of 1200?km in controlling postprocedural oesophageal stricture. Ten patients who underwent complete circular or semicircular ESD for ESCC were transplanted with cell sheets. The safety of the entire process including cell sheet preparation, transport, ESD and cell sheet transplantation was assessed. The incidence of oesophageal stricture, number of EBD sessions, and time until epithelialization were investigated. Each ESD was successfully performed, with subsequent cell sheet engrafting carried out safely. Following cell sheet transplantation, the luminal stenosis rate was 40%, while the median number of EBD sessions was 0. The median post-ESD ulcer healing period was rather short at 36 days. There were no significant complications at any stage of the process. Cell sheet transplantation and preparation at distant sites and transportation by air could be a safe and promising regenerative medicine technology

    Pleiotropic Effects of Sox2 during the Development of the Zebrafish Epithalamus

    Get PDF
    The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants

    Growth of embryonal carcinoma cells in serum-free medium.

    No full text
    Two mouse embryonal carcinoma cell lines, PCC.4 aza-1 and F9, have been grown in serum-free F-12 medium supplemented with Pedersen fetuin, insulin, transferrin, and 2-mercaptoethanol. This medium supports long-term growth of both cell lines. When these cells are transferred from medium containing serum to this serum-free medium, growth continues without any detectable lag. PCC.4 aza-1 grown in this medium for over 20 generations retains the capacity to differentiate in vivo. This medium appears to be a general serum-free medium for the growth of embryonal carcinoma cells

    Growth and differentiation of embryonal carcinoma cell line F9 in defined media.

    No full text
    • …
    corecore