8 research outputs found

    Risk factors for multidrug-resistant tuberculosis in urban Pakistan: A multicenter case-control study

    Get PDF
    Objective: To evaluate risk factors for multidrug-resistant tuberculosis (MDR-TB) in an urban setting of Pakistan.DESIGN AND Methods: In this multicenter case-control study, patients aged 15years old or older with sputum culture and sensitivity (C/S) diagnosed with pulmonary MDR-TB were defined as cases, whereas patients aged 15years old or older with sputum C/S diagnosed and susceptible to pulmonary TB were regarded as controls. Fifty cases and 75 controls were enrolled from three tertiary-care hospitals in Karachi.Results: Multivariable logistic regression models showed that cases were more likely to have had a TB patient in the house prior to the diagnosis of MDR-TB (adjusted odds ratio [ORadj]=3.1, 95% confidence interval [CI]: 1.2, 8.3) or had a history of prior TB treatment (ORadj=4.2, 95% CI: 1.1, 15.4). Furthermore, cases compared with controls tended to be male (ORadj=3.6, 95% CI: 1.4, 9.7), 15-25years of age (ORadj=3.7, 95% CI: 1.2, 11.3), of Sindhi ethnicity (adjusted OR=9.1, 95% CI: 1.9, 43.4) or with low educational attainment (ORadj OR=5.5, 95% CI: 1.7-17.6, for no formal schooling; ORadj=3.8, 95% CI: 1.1-14.1, 1 for 1-5 school years).CONCLUSIONS: A TB patient in the house or a history of prior TB treatment was strongly associated with MDR-TB in this study. Furthermore, younger age, male gender, Sindhi ethnicity and poor educational attainment entailed a high risk for MDR-TB. Targeted educational intervention for patients and their contacts may minimize the noncompliance with prescribed TB treatment and lessen MDR-TB magnitude in settings like Karachi

    Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci.

    Get PDF
    Funder: PfizerFunder: NovartisFunder: National Institute for Health ResearchFunder: MerckBackgroundGenetic, lifestyle, and environmental factors can lead to perturbations in circulating lipid levels and increase the risk of cardiovascular and metabolic diseases. However, how changes in individual lipid species contribute to disease risk is often unclear. Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a population historically underrepresented in cardiovascular studies.MethodsWe characterised the genetic architecture of the human blood lipidome in 5662 hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 13,814 healthy British blood donors from the INTERVAL study. We applied a candidate causal gene prioritisation tool to link the genetic variants associated with each lipid to the most likely causal genes, and Gaussian Graphical Modelling network analysis to identify and illustrate relationships between lipids and genetic loci.ResultsWe identified 253 genetic associations with 181 lipids measured using direct infusion high-resolution mass spectrometry in PROMIS, and 502 genetic associations with 244 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci associated with cardiometabolic diseases, including novel lipid associations at the LPL, MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci.ConclusionsOur findings, generated using a distinctive lipidomics platform in an understudied South Asian population, strengthen and expand the knowledge base of the genetic determinants of lipids and their association with cardiometabolic disease-related loci

    Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity

    Get PDF
    A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.D.S. is supported by grants from the National Institutes of Health, the Fogarty International, the Wellcome Trust, the British Heart Foundation, and Pfizer. P.N. is supported by the John S. LaDue Memorial Fellowship in Cardiology from Harvard Medical School. H.-H.W. is supported by a grant from the Samsung Medical Center, Korea (SMO116163). S.K. is supported by the Ofer and Shelly Nemirovsky MGH Research Scholar Award and by grants from the National Institutes of Health (R01HL107816), the Donovan Family Foundation, and Fondation Leducq. Exome sequencing was supported by a grant from the NHGRI (5U54HG003067-11) to S.G. and E.S.L. D.G.M. is supported by a grant from the National Institutes of Health (R01GM104371). J.D. holds a British Heart Foundation Chair, European Research Council Senior Investigator Award, and NIHR Senior Investigator Award. The Cardiovascular Epidemiology Unit at the University of Cambridge, which supported the field work and genotyping of PROMIS, is funded by the UK Medical Research Council, British Heart Foundation, and NIHR Cambridge Biomedical Research Centre ... Fieldwork in the PROMIS study has been supported through funds available to investigators at the Center for Non-Communicable Diseases, Pakistan and the University of Cambridge, UK

    Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis.

    Get PDF
    BACKGROUND: The lipoprotein(a) pathway is a causal factor in coronary heart disease. We used a genetic approach to distinguish the relevance of two distinct components of this pathway, apolipoprotein(a) isoform size and circulating lipoprotein(a) concentration, to coronary heart disease. METHODS: In this mendelian randomisation study, we measured lipoprotein(a) concentration and determined apolipoprotein(a) isoform size with a genetic method (kringle IV type 2 [KIV2] repeats in the LPA gene) and a serum-based electrophoretic assay in patients and controls (frequency matched for age and sex) from the Pakistan Risk of Myocardial Infarction Study (PROMIS). We calculated odds ratios (ORs) for myocardial infarction per 1-SD difference in either LPA KIV2 repeats or lipoprotein(a) concentration. In a genome-wide analysis of up to 17 503 participants in PROMIS, we identified genetic variants associated with either apolipoprotein(a) isoform size or lipoprotein(a) concentration. Using a mendelian randomisation study design and genetic data on 60 801 patients with coronary heart disease and 123 504 controls from the CARDIoGRAMplusC4D consortium, we calculated ORs for myocardial infarction with variants that produced similar differences in either apolipoprotein(a) isoform size in serum or lipoprotein(a) concentration. Finally, we compared phenotypic versus genotypic ORs to estimate whether apolipoprotein(a) isoform size, lipoprotein(a) concentration, or both were causally associated with coronary heart disease. FINDINGS: The PROMIS cohort included 9015 patients with acute myocardial infarction and 8629 matched controls. In participants for whom KIV2 repeat and lipoprotein(a) data were available, the OR for myocardial infarction was 0·93 (95% CI 0·90-0·97; p<0·0001) per 1-SD increment in LPA KIV2 repeats after adjustment for lipoprotein(a) concentration and conventional lipid concentrations. The OR for myocardial infarction was 1·10 (1·05-1·14; p<0·0001) per 1-SD increment in lipoprotein(a) concentration, after adjustment for LPA KIV2 repeats and conventional lipids. Genome-wide analysis identified rs2457564 as a variant associated with smaller apolipoprotein(a) isoform size, but not lipoprotein(a) concentration, and rs3777392 as a variant associated with lipoprotein(a) concentration, but not apolipoprotein(a) isoform size. In 60 801 patients with coronary heart disease and 123 504 controls, OR for myocardial infarction was 0·96 (0·94-0·98; p<0·0001) per 1-SD increment in apolipoprotein(a) protein isoform size in serum due to rs2457564, which was directionally concordant with the OR observed in PROMIS for a similar change. The OR for myocardial infarction was 1·27 (1·07-1·50; p=0·007) per 1-SD increment in lipoprotein(a) concentration due to rs3777392, which was directionally concordant with the OR observed for a similar change in PROMIS. INTERPRETATION: Human genetic data suggest that both smaller apolipoprotein(a) isoform size and increased lipoprotein(a) concentration are independent and causal risk factors for coronary heart disease. Lipoprotein(a)-lowering interventions could be preferentially effective in reducing the risk of coronary heart disease in individuals with smaller apolipoprotein(a) isoforms. FUNDING: British Heart Foundation, US National Institutes of Health, Fogarty International Center, Wellcome Trust, UK Medical Research Council, UK National Institute for Health Research, and Pfizer

    Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    Get PDF
    To evaluate the shared genetic etiology of type 2 diabetes (T2D) and coronary heart disease (CHD), we conducted a genome-wide, multi-ancestry study of genetic variation for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for T2D and 1 locus for CHD, including a new T2D association at a missense variant in HLA-DRB5 (odds ratio (OR) = 1.29). We show that genetically mediated increase in T2D risk also confers higher CHD risk. Joint T2D–CHD analysis identified eight variants—two of which are coding—where T2D and CHD associations appear to colocalize, including a new joint T2D–CHD association at the CCDC92 locus that also replicated for T2D. The variants associated with both outcomes implicate new pathways as well as targets of existing drugs, including icosapent ethyl and adipocyte fatty-acid-binding protein.D.S. has received support from NHLBI, NINDS, Pfizer, Regeneron Pharmaceuticals, Genentech, and Eli Lilly. Genotyping in PROMIS was funded by the Wellcome Trust, UK, and Pfizer. Biomarker assays in PROMIS have been funded through grants awarded by the NIH (RC2HL101834 and RC1TW008485) and Fogarty International (RC1TW008485). The RACE study has been funded by NINDS (R21NS064908), Fogarty International (R21NS064908), and the Center for Non-Communicable Diseases (Karachi, Pakistan). B.F.V. was supported by funding from the American Heart Association (13SDG14330006), the W.W. Smith Charitable Trust (H1201), and the NIH/NIDDK (R01DK101478). J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. V.S. was supported by the Finnish Foundation for Cardiovascular Research. S. Ripatti was supported by the Academy of Finland (251217 and 255847), the Center of Excellence in Complex Disease Genetics, the European Union’s Seventh Framework Programme projects ENGAGE (201413) and BioSHaRE (261433), the Finnish Foundation for Cardiovascular Research, Biocentrum Helsinki, and the Sigrid Juselius Foundation. The Mount Sinai IPM Biobank Program is supported by the Andrea and Charles Bronfman Philanthropies. S. Anand is supported by grants from the Canada Research Chair in Ethnic Diversity and CVD and from the Heart and Stroke Michael G. DeGroote Chair in Population Health, McMaster University. Data contributed by Biobank Japan were partly supported by a grant from the Leading Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank the participants and staff of the Copenhagen Ischemic Heart Disease Study and the Copenhagen General Population Study for their important contributions. The CHD Exome+ Consortium was funded by the UK Medical Research Council (G0800270), the British Heart Foundation (SP/09/002), the UK NIHR Cambridge Biomedical Research Centre, the European Research Council (268834), the European Commission’s Framework Programme 7 (HEALTH-F2-2012-279233), Merck, and Pfizer. PROSPER has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-F2-2009-223004
    corecore