887 research outputs found

    Superconformal index of low-rank gauge theories via the Bethe Ansatz

    Get PDF
    We study the Bethe Ansatz formula for the superconformal index, in the case of 4d N = 4 super-Yang-Mills with gauge group SU(N). We observe that not all solutions to the Bethe Ansatz Equations (BAEs) contribute to the index, and thus formulate “reduced BAEs” such that all and only their solutions contribute. We then propose, sharpening a conjecture of Arabi Ardehali et al., that there is a one-to-one correspondence between branches of solutions to the reduced BAEs and vacua of the 4d N = 1* theory. We test the proposal in the case of SU(2) and SU(3). In the case of SU(3), we confirm that there is a continuous family of solutions, whose contribution to the index is non-vanishing

    Lidar observations of mesospheric sodium over Italy

    Get PDF
    We have developed a lidar system for the measurements of the mesospheric atomic sodium (Na) number density profile. The performances and the main characteristics of the system are evaluated showing the first observations: Na number density profiles can be obtained with a resolution of 300 m in altitude and of 200 s in time, the relative uncertainty is between 5% and 10%. These features also allow to discuss the capability of the system to detect the time and space variability of Na density profiles, which is typical of the gravity wave propagation. The preliminary analysis of the sodium profile dynamics along a 7 hours measurement session, started from 19:30UT on 10 April 1997, shows the presence of wave-like perturbations with characteristics typical of propagating gravity waves

    A combined Rayleigh-Raman lidar for measurements of tropospheric water vapour and aerosol profiles

    Get PDF
    The receiver of the Differential Absorption Lidar system of the University of L’Aquila (Italy) has been upgraded for the detection of Raman scattering from nitrogen and water vapour induced by XeCl and XeF excimer laser lines. In this configuration, only the XeF source is activated, so we can measure the tropospheric water vapour mixing ratio profiles with a height resolution of 300 m and 10 min in time. The lower limit sensitivity for the mixing ratio of water vapour is about 2 Q1024 and the precision ranges between 5% at 2 km and 50% at 9 km. The aerosol back-scattering ratio profiles can be measured with the same altitude and time resolution up to the lower stratosphere, the relative error is below 5% in the troposphere and about 30% at the highest altitudes. Comparisons with coincident PTU balloon-sondes show that the performances of the system in measuring the tropospheric water vapour are well calibrated for studying the water vapour evolution and cloud formation in the troposphere

    Non-equilibrium evolution of stratospheric particles under multi-components diffusive condensation/evaporation regime

    Get PDF
    A box model is used to study the evolution of stratospheric HNO3/H2SO4/H2O solution particles along temperature variations, which force the droplet ensemble far from the thermodynamic equilibrium. In the case of rapid temperature fluctuations, i.e. orographically forced lee waves, the model shows that the micron-sized droplets meet the conditions to become precursors of solid particles, mainly constituted of nitric acid hydrates. This paper examines how the particle size distributions and compositions are influenced by the presence of rapid temperature fluctuations, comparing model calculations along prescribed thermal histories. There results a remarkable dependence of the particle physical status (solid and/or liquid) on the presence of wave-like perturbations in the former thermal history of the air mass

    Sensible heat flux and boundary layer depth measurements by Doppler SODAR and sonic anemometer data

    Get PDF
    A validation of a simple mixed-layer similarity relationship, firstly proposed by Panofsky and McCormick (1960), is presented for wind speeds up to 7 ms21 and over an uneven terrain. The surface heat flux and the Planetary Boundary Layer depth, zi, are retrieved from this relationship, by using SODAR measurements of the vertical velocity variance s 2 w, under the hypothesis that the heat flux linearly decreases with height. All the measurements are relative to days characterized by high-pressure conditions, during periods of well-developed convection. The values of the surface heat flux obtained from such a method are compared with those obtained by applying the eddy correlation technique to the vertical wind velocities and virtual temperatures measured by a sonic anemometer. The values of zi obtained from the same relationship are compared with the height of the lowest inversion layer estimated from the facsimile record of the echoes received by the vertical antenna of the SODAR. The spectral behavior of vertical and longitudinal wind velocity from the anemometer and the SODAR is examined, too. In such a way an independent estimate of zi is obtained from the position of the spectral maximum

    Overview: Tropospheric profiling: state of the art and future challenges – introduction to the AMT special issue

    Get PDF
    Abstract. This paper introduces the Atmospheric Measurement Techniques special issue on tropospheric profiling, which was conceived to host full papers presenting the results shown at the 9th International Symposium on Tropospheric Profiling (ISTP9). ISTP9 was held in L'Aquila (Italy) from 3 to 7 September 2012, bringing together 150 scientists representing of 28 countries and 3 continents. The tropospheric profiling special issue collects the highlights of ISTP9, reporting recent advances and future challenges in research and technology development

    Ozone, aerosols and polar stratospheric clouds measurements during the EASOE Campaign

    Get PDF
    Preliminary results are presented of observations obtained during the EASOE campaign, with an airborne backscatter lidar and a ground-based DIAL ozone lidar system. Although the main signature observed on the lidar signals was due to the Pinatubo cloud which erupted in June 1991, distinct PSC events were detected on several occasions by the airborne lidar often in relation with orographic wave activity over the norvegian mountains. The ozone profiles obtained in Sodankyla with the ground based lidar are locally perturbed by the presence of the volcanic cloud. After a first correction of the aerosols effect, they present however a reasonably good agreement with the ozone sondes profiles performed on the same site

    Comparing Simultaneous Stratospheric Aerosol and Ozone Lidar Measurements with SAGE 2 Data after the Mount Pinatubo Eruption

    Get PDF
    Stratospheric aerosol and ozone profiles obtained simultaneously from the lidar station at the University of L'Aquila (42.35 deg N, 13.33 deg E, 683 m above sea level) during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratospheric Aerosol and Gas Experiment (SAGE) 2 profiles. The agreement between the two data sets is found to be reasonably good. The temporal change of aerosol profiles obtained by both techniques showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concentration profiles derived from an empirical time-series model based on SAGE 2 ozone data obtained before the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentrations measured in January 1992 were reduced relative to time-series model estimates. Possible reasons for the differences between measured and model-based ozone profiles are discussed

    Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3\mathrm{SrTi}{\mathrm{O}}_{3} crystals and at the interface of the corresponding LaAlO3/SrTiO3\mathrm{LaAl}{\mathrm{O}}_{3}/\mathrm{SrTi}{\mathrm{O}}_{3} heterostructures

    Get PDF
    With infrared (IR) ellipsometry and dc resistance measurements, we investigated the photodoping at the (001) and (110) surfaces of SrTiO3 (STO) single crystals and at the corresponding interfaces of LaAlO3/SrTiO3 (LAO/STO) heterostructures. In the bare STO crystals, we find that the photogenerated charge carriers, which accumulate near the (001) surface, have a similar depth profile and sheet carrier concentration as the confined electrons that were previously observed in LAO/STO (001) heterostructures. A large fraction of these photogenerated charge carriers persist at low temperature at the STO (001) surface even after the ultraviolet light has been switched off again. These persistent charge carriers seem to originate from oxygen vacancies that are trapped at the structural domain boundaries, which develop below the so-called antiferrodistortive transition at T∗=105K. This is most evident from a corresponding photodoping study of the dc transport in STO (110) crystals for which the concentration of these domain boundaries can be modified by applying a weak uniaxial stress. The oxygen vacancies and their trapping by defects are also the source of the electrons that are confined to the interface of LAO/STO (110) heterostructures, which likely do not have a polar discontinuity as in LAO/STO (001). In the former, the trapping and clustering of the oxygen vacancies also has a strong influence on the anisotropy of the charge carrier mobility. We show that this anisotropy can be readily varied and even inverted by various means, such as a gentle thermal treatment, UV irradiation, or even a weak uniaxial stress. Our experiments suggest that extended defects, which develop over long time periods (of weeks to months), can strongly influence the response of the confined charge carriers at the LAO/STO (110) interface
    corecore