907 research outputs found
Near-Earth asteroid (3200) Phaethon. Characterization of its orbit, spin state, and thermophysical parameters
The near-Earth asteroid (3200) Phaethon is an intriguing object: its
perihelion is at only 0.14 au and is associated with the Geminid meteor stream.
We aim to use all available disk-integrated optical data to derive a reliable
convex shape model of Phaethon. By interpreting the available space- and
ground-based thermal infrared data and Spitzer spectra using a thermophysical
model, we also aim to further constrain its size, thermal inertia, and visible
geometric albedo. We applied the convex inversion method to the new optical
data obtained by six instruments and to previous observations. The convex shape
model was then used as input for the thermophysical modeling. We also studied
the long-term stability of Phaethon's orbit and spin axis with a numerical
orbital and rotation-state integrator. We present a new convex shape model and
rotational state of Phaethon: a sidereal rotation period of 3.603958(2) h and
ecliptic coordinates of the preferred pole orientation of (319,
39) with a 5 uncertainty. Moreover, we derive its size
(=5.10.2 km), thermal inertia (=600200 J m
s K), geometric visible albedo
(=0.1220.008), and estimate the macroscopic surface
roughness. We also find that the Sun illumination at the perihelion passage
during the past several thousand years is not connected to a specific area on
the surface, which implies non-preferential heating.Comment: Astronomy and Astrophysics. In pres
Freeze-out volume in multifragmentation - dynamical simulations
Stochastic mean-field simulations for multifragmenting sources at the same
excitation energy per nucleon have been performed. The freeze-out volume, a
concept which needs to be precisely defined in this dynamical approach, was
shown to increase as a function of three parameters: freeze-out instant,
fragment multiplicity and system size.Comment: Submitted to Eur. Phys. J. A - march 200
Use of Bimodal Coherence to Resolve Spectral Indeterminacy in Convolutive BSS
Recent studies show that visual information contained in visual speech can be helpful for the performance enhancement of audio-only blind source separation (BSS) algorithms. Such information is exploited through the statistical characterisation of the coherence between the audio and visual speech using, e.g. a Gaussian mixture model (GMM). In this paper, we present two new contributions. An adapted expectation maximization (AEM) algorithm is proposed in the training process to model the audio-visual coherence upon the extracted features. The coherence is exploited to solve the permutation problem in the frequency domain using a new sorting scheme. We test our algorithm on the XM2VTS multimodal database. The experimental results show that our proposed algorithm outperforms traditional audio-only BSS
Fluctuating lattice Boltzmann
The lattice Boltzmann algorithm efficiently simulates the Navier Stokes
equation of isothermal fluid flow, but ignores thermal fluctuations of the
fluid, important in mesoscopic flows. We show how to adapt the algorithm to
include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at
lattice level: this gives correct fluctuations for mass and momentum densities,
and for stresses, at all wavevectors . Unlike previous work, which recovers
FDT only as , our algorithm offers full statistical mechanical
consistency in mesoscale simulations of, e.g., fluctuating colloidal
hydrodynamics.Comment: 7 pages, 3 figures, to appear in Europhysics Letter
Nuclear multifragmentation time-scale and fluctuations of largest fragment size
Distributions of the largest fragment charge, Zmax, in multifragmentation
reactions around the Fermi energy can be decomposed into a sum of a Gaussian
and a Gumbel distribution, whereas at much higher or lower energies one or the
other distribution is asymptotically dominant. We demonstrate the same generic
behavior for the largest cluster size in critical aggregation models for small
systems, in or out of equilibrium, around the critical point. By analogy with
the time-dependent irreversible aggregation model, we infer that Zmax
distributions are characteristic of the multifragmentation time-scale, which is
largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201
On-sky observations with an achromatic hybrid phase knife coronagraph in the visible
CONTEXT: The four-quadrant phase mask stellar coronagraph, introduced by D.
Rouan et al., is capable of achieving very high dynamical range imaging and was
studied in the context of the direct detection of extra-solar planets.
Achromatic four-quadrant phase mask is currently being developed for broadband
IR applications. AIMS: We report on laboratory and on-sky tests of a prototype
coronagraph in the visible. This prototype, the achromatic hybrid phase knife
coronagraph, was derived from the four-quadrant phase mask principle. METHODS:
The instrumental setup implementing the coronagraph itself was designed to
record the pre- and post-coronagraphic images simultaneously so that an
efficient real-time image selection procedure can be performed. We describe the
coronagraph and the associated tools that enable robust and repeatable
observations. We present an algorithm of image selection that has been tested
against the real on-sky data of the binary star HD80081 (* 38 Lyn). RESULTS
Although the observing conditions were poor, the efficiency of the proposed
method is proven. From this experiment, we derive procedures that can apply to
future focal instruments associating adaptive optics and coronagraphy,
targeting high dynamic range imaging in astronomy, such as detecting
extra-solar planets
- âŠ