14,086 research outputs found

    Evaluating Responses of Sugar Beet Cultivars to Fusarium Species in Greenhouse and Field Conditions

    Get PDF
    Fusarium yellows of sugar beet (Beta vulgaris L.) is becoming an important disease in Minnesota and North Dakota in the United States. One of the best ways to manage Fusarium yellows is to develop and use resistant cultivars. Responses of eight sugar beet cultivars to three Fusarium species were determined in the greenhouse and compared to the responses of the same eight cultivars grown in a field already infected by Fusarium yellows. There were significant and appreciable relationships between greenhouse and field studies for responses of eight sugar beet cultivars on Fusarium yellows. The estimated correlation coefficient for area under disease progress curve (AUDPC) between observations in fields and those in greenhouses was 0.987 (p<0.01). The mean AUDPC were significantly different among cultivars (p<0.01) in the greenhouse and in the field studies. Of the cultivars, Van der Have 46177 was the most susceptible, but Crystal R434 the most resistant. Crystal 820, Van der Have 66561, and Beta 4797R were resistant, and Beta 4818R, Seedex Magnum, and Hilleshog 2463Rz were moderately resistant. There was a strong negative relationship between the AUDPC and recoverable sucrose yield in the field experiments and the estimated coefficient of determination was 0.939 (p<0.01). It was concluded that greenhouse screening can act as a useful and reliable means to evaluate and select beet germplasms and/or accessions for resistance to Fusarium yellows.Peer reviewe

    Methodology for determining optimized traffic light cycles based on simulation

    Get PDF
    In large urbanized cities, a major problem that affects the economy and health of all citizens is vehicular congestion. This is because the traffic light cycles are not adequate. In the present study, we seek to optimize traffic light cycles based on simulation, in order to improve vehicle flow. For this, the PTV Vissim 9.0 software was used as a simulator and the Synchro 10.0 software to determine the initial optimal traffic light cycle. Through several runs and having as variables the length of queues, delay times and the average speed, the optimal traffic light cycle could be found for the study area. The results obtained reflect a 14% reduction in delay times and 10% in queue lengths. On the other hand, the average vehicle speed increased by 10.56%. All this represents an improvement in the service level of the study intersections

    Manifestation of geometric resonance in current dependence of AC susceptibility for unshunted array of Nb-AlOx-Nb Josephson junctions

    Full text link
    A pronounced resonance-like structure has been observed in the current dependence of AC susceptibility for two-dimensional array of unshunted Nb-AlOx-Nb Josephson junctions. Using a single-plaquette approximation, we were able to successfully fit our data assuming that resonance structure is related to the geometric (inductive) properties of the array.Comment: to appear in Physica C (in press

    Universal R-C crossover in current-voltage characteristics for unshunted array of overdamped Nb-AlO_x-Nb Josephson junctions

    Full text link
    We report on some unusual behavior of the measured current-voltage characteristics (CVC) in artificially prepared two-dimensional unshunted array of overdamped Nb-AlO_x-Nb Josephson junctions. The obtained nonlinear CVC are found to exhibit a pronounced (and practically temperature independent) crossover at some current I_{cr}=\left(\frac{1}{2\beta_C}-1\right)I_C from a resistance R dominated state with V_R=R\sqrt{I^2-I_C^2} below I_{cr} to a capacitance C dominated state with V_C=\sqrt{\frac{\hbar}{4eC}} \sqrt{I-I_C} above I_{cr}. The origin of the observed behavior is discussed within a single-plaquette approximation assuming the conventional RSJ model with a finite capacitance and the Ambegaokar-Baratoff relation for the critical current of the single junction

    An experimental study of tip shape effects on the flutter of aft-swept, flat-plate wings

    Get PDF
    The effects of tip chord orientation on wing flutter are investigated experimentally using six cantilever-mounted, flat-plate wing models. Experimentally determined flutter characteristics of the six models are presented covering both the subsonic and transonic Mach number ranges. While all models have a 60 degree leading edge sweep, a 40.97 degree trailing edge sweep, and a root chord of 34.75 inches, they are subdivided into two series characterized by a higher aspect ratio and a lower aspect ratio. Each series is made up of three models with tip chord orientations which are parallel to the free-stream flow, perpendicular to the model mid-chord line, and perpendicular to the free-stream flow. Although planform characteristics within each series of models are held constant, structural characteristics such as mode shapes and natural frequencies are allowed to vary

    A tensor instability in the Eddington inspired Born-Infeld Theory of Gravity

    Full text link
    In this paper we consider an extension to Eddington's proposal for the gravitational action. We study tensor perturbations of a homogeneous and isotropic space-time in the Eddington regime, where modifications to Einstein gravity are strong. We find that the tensor mode is linearly unstable deep in the Eddington regime and discuss its cosmological implications.Comment: 5 pages, approved by Phys. Rev. D, additional references and minor modification

    Effect of Charged Scalar Loops on Photonic Decays of a Fermiophobic Higgs

    Full text link
    Higgs bosons with very suppressed couplings to fermions ("Fermiophobic Higgs bosons", h_f) can decay to two photons (\gamma\gamma) with a branching ratio significantly larger than that expected for the Standard Model Higgs boson for m_{h_f}<150 GeV. Such a particle would give a clear signal at the LHC and can arise in the Two Higgs Doublet Model (type I) in which h_f -> \gamma\gamma is mediated by W^+ and charged Higgs boson (H^+) loops. We show that the H^+ loops can cause both constructive and destructive contributions with a magnitude considerably larger than the anticipated precision in the measurement of the photonic decay channel at future hadron and lepton colliders.Comment: 18 pages, 5 figures, clarifications added, one reference added, accepted by Physical Review
    • …
    corecore