79 research outputs found

    One-Year Safety Analysis of the COMPARE-AMI Trial: Comparison of Intracoronary Injection of CD133+ Bone Marrow Stem Cells to Placebo in Patients after Acute Myocardial Infarction and Left Ventricular Dysfunction

    Get PDF
    Bone marrow stem cell therapy has emerged as a promising approach to improve healing of the infarcted myocardium. Despite initial excitement, recent clinical trials using non-homogenous stem cells preparations showed variable and mixed results. Selected CD133+ hematopoietic stem cells are candidate cells with high potential. Herein, we report the one-year safety analysis on the initial 20 patients enrolled in the COMPARE-AMI trial, the first double-blind randomized controlled trial comparing the safety, efficacy, and functional effect of intracoronary injection of selected CD133+ cells to placebo following acute myocardial infarction with persistent left ventricular dysfunction. At one year, there is no protocol-related complication to report such as death, myocardial infarction, stroke, or sustained ventricular arrhythmia. In addition, the left ventricular ejection fraction significantly improved at four months as compared to baseline and remained significantly higher at one year. These data indicate that in the setting of the COMPARE-AMI trial, the intracoronary injection of selected CD133+ stem cells is secure and feasible in patients with left ventricle dysfunction following acute myocardial infarction

    Atrial Tachycardias Arising from Ablation of Atrial Fibrillation: A Proarrhythmic Bump or an Antiarrhythmic Turn?

    Get PDF
    The occurrence of atrial tachycardias (AT) is a direct function of the volume of atrial tissue ablated in the patients with atrial fibrillation (AF). Thus, the incidence of AT is highest in persistent AF patients undergoing stepwise ablation using the strategic combination of pulmonary vein isolation, electrogram based ablation and left atrial linear ablation. Using deductive mapping strategy, AT can be divided into three clinical categories viz. the macroreentry, the focal and the newly described localized reentry all of which are amenable to catheter ablation with success rate of 95%. Perimitral, roof dependent and cavotricuspid isthmus dependent AT involve large reentrant circuits which can be successfully ablated at the left mitral isthmus, left atrial roof and tricuspid isthmus respectively. Complete bidirectional block across the sites of linear ablation is a necessary endpoint. Focal and localized reentrant AT commonly originate from but are not limited to the septum, posteroinferior left atrium, venous ostia, base of the left atrial appendage and left mitral isthmus and they respond quickly to focal ablation. AT not only represents ablation-induced proarrhythmia but also forms a bridge between AF and sinus rhythm in longstanding AF patients treated successfully with catheter ablation

    The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection

    Get PDF
    Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)–incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation

    Poésie interstitielle. Poésie durable : une exposition de trottoir de Péristyle Nomade

    No full text

    L’esthétique du fragment : vers un engagement circonstanciel de l’anonyme

    No full text

    Performances invisibles : entre l’histoire et le présent

    No full text

    La fatigue culturelle

    No full text

    IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti

    No full text
    Mobile genetic elements play a pivotal role in the adaptation of bacterial populations, allowing them to rapidly cope with hostile conditions, including the presence of antimicrobial compounds. IncA/C conjugative plasmids (ACPs) are efficient vehicles for dissemination of multidrug resistance genes in a broad range of pathogenic species of Enterobacteriaceae. ACPs have sporadically been reported in Vibrio cholerae, the infectious agent of the diarrheal disease cholera. The regulatory network that controls ACP mobility ultimately depends on the transcriptional activation of multiple ACP-borne operons by the master activator AcaCD. Beyond ACP conjugation, AcaCD has also recently been shown to activate the expression of genes located in the Salmonella genomic island 1 (SGI1). Here, we describe MGIVchHai6, a novel and unrelated mobilizable genomic island (MGI) integrated into the 3′ end of trmE in chromosome I of V. cholerae HC-36A1, a non-O1/non-O139 multidrug-resistant clinical isolate recovered from Haiti in 2010. MGIVchHai6 contains a mercury resistance transposon and an integron In104-like multidrug resistance element similar to the one of SGI1. We show that MGIVchHai6 excises from the chromosome in an AcaCD-dependent manner and is mobilized by ACPs. Acquisition of MGIVchHai6 confers resistance to β-lactams, sulfamethoxazole, tetracycline, chloramphenicol, trimethoprim, and streptomycin/spectinomycin. In silico analyses revealed that MGIVchHai6-like elements are carried by several environmental and clinical V. cholerae strains recovered from the Indian subcontinent, as well as from North and South America, including all non-O1/non-O139 clinical isolates from Haiti
    corecore