88 research outputs found

    Altered Insulin Receptor Signalling and β-Cell Cycle Dynamics in Type 2 Diabetes Mellitus

    Get PDF
    Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells – which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM

    Efficiency of Purine Utilization by Helicobacter pylori: Roles for Adenosine Deaminase and a NupC Homolog

    Get PDF
    The ability to synthesize and salvage purines is crucial for colonization by a variety of human bacterial pathogens. Helicobacter pylori colonizes the gastric epithelium of humans, yet its specific purine requirements are poorly understood, and the transport mechanisms underlying purine uptake remain unknown. Using a fully defined synthetic growth medium, we determined that H. pylori 26695 possesses a complete salvage pathway that allows for growth on any biological purine nucleobase or nucleoside with the exception of xanthosine. Doubling times in this medium varied between 7 and 14 hours depending on the purine source, with hypoxanthine, inosine and adenosine representing the purines utilized most efficiently for growth. The ability to grow on adenine or adenosine was studied using enzyme assays, revealing deamination of adenosine but not adenine by H. pylori 26695 cell lysates. Using mutant analysis we show that a strain lacking the gene encoding a NupC homolog (HP1180) was growth-retarded in a defined medium supplemented with certain purines. This strain was attenuated for uptake of radiolabeled adenosine, guanosine, and inosine, showing a role for this transporter in uptake of purine nucleosides. Deletion of the GMP biosynthesis gene guaA had no discernible effect on mouse stomach colonization, in contrast to findings in numerous bacterial pathogens. In this study we define a more comprehensive model for purine acquisition and salvage in H. pylori that includes purine uptake by a NupC homolog and catabolism of adenosine via adenosine deaminase

    Lack of Wdr13 Gene in Mice Leads to Enhanced Pancreatic Beta Cell Proliferation, Hyperinsulinemia and Mild Obesity

    Get PDF
    WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes

    Early Treatment with Basal Insulin Glargine in People with Type 2 Diabetes: Lessons from ORIGIN and Other Cardiovascular Trials

    Get PDF
    Dysglycemia results from a deficit in first-phase insulin secretion compounded by increased insulin insensitivity, exposing beta cells to chronic hyperglycemia and excessive glycemic variability. Initiation of intensive insulin therapy at diagnosis of type 2 diabetes mellitus (T2DM) to achieve normoglycemia has been shown to reverse glucotoxicity, resulting in recovery of residual beta-cell function. The United Kingdom Prospective Diabetes Study (UKPDS) 10-year post-trial follow-up reported reductions in cardiovascular outcomes and all-cause mortality in persons with T2DM who initially received intensive glucose control compared with standard therapy. In the cardiovascular outcome trial, outcome reduction with an initial glargine intervention (ORIGIN), a neutral effect on cardiovascular disease was observed in the population comprising prediabetes and T2DM. Worsening of glycemic control was prevented over the 6.7 year treatment period, with few serious hypoglycemic episodes and only moderate weight gain, with a lesser need for dual or triple oral treatment versus standard care. Several other studies have also highlighted the benefits of early insulin initiation as first-line or add-on therapy to metformin. The decision to introduce basal insulin to metformin must, however be individualized based on a risk-benefit analysis. The landmark ORIGIN trial provides many lessons relating to the concept and application of early insulin therapy for the prevention and safe and effective induction and maintenance of glycemic control in type 2 diabetes

    Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action

    Get PDF
    In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-gamma+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCR alpha beta- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCR alpha beta- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage

    A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because insulin is the main regulator of glucose homeostasis, quantitative models describing the dynamics of glucose-induced insulin secretion are of obvious interest. Here, a computational model is introduced that focuses not on organism-level concentrations, but on the quantitative modeling of local, cellular-level glucose-insulin dynamics by incorporating the detailed spatial distribution of the concentrations of interest within isolated avascular pancreatic islets.</p> <p>Methods</p> <p>All nutrient consumption and hormone release rates were assumed to follow Hill-type sigmoid dependences on local concentrations. Insulin secretion rates depend on both the glucose concentration and its time-gradient, resulting in second-and first-phase responses, respectively. Since hypoxia may also be an important limiting factor in avascular islets, oxygen and cell viability considerations were also built in by incorporating and extending our previous islet cell oxygen consumption model. A finite element method (FEM) framework is used to combine reactive rates with mass transport by convection and diffusion as well as fluid-mechanics.</p> <p>Results</p> <p>The model was calibrated using experimental results from dynamic glucose-stimulated insulin release (GSIR) perifusion studies with isolated islets. Further optimization is still needed, but calculated insulin responses to stepwise increments in the incoming glucose concentration are in good agreement with existing experimental insulin release data characterizing glucose and oxygen dependence. The model makes possible the detailed description of the intraislet spatial distributions of insulin, glucose, and oxygen levels. In agreement with recent observations, modeling also suggests that smaller islets perform better when transplanted and/or encapsulated.</p> <p>Conclusions</p> <p>An insulin secretion model was implemented by coupling local consumption and release rates to calculations of the spatial distributions of all species of interest. The resulting glucose-insulin control system fits in the general framework of a sigmoid proportional-integral-derivative controller, a generalized PID controller, more suitable for biological systems, which are always nonlinear due to the maximum response being limited. Because of the general framework of the implementation, simulations can be carried out for arbitrary geometries including cultured, perifused, transplanted, and encapsulated islets.</p

    Pulsatility of insulin release – a clinically important phenomenon

    Get PDF
    The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting β-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca2+. Within the islets the β-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing α-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y1 receptors. Knock-out of the adenosine A1 receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood
    corecore