51 research outputs found

    A Novel Approach to Small Form-Factor Spacecraft Structures for Usage in Precision Optical Payloads

    Get PDF
    Precision optical payloads will soon experience a boom in manufacturing scale with the onset of proliferated satellite constellation concepts. Presently, the cost of assembly for a single unit can reach upwards of $500,000. Reduction in recurring engineering and assembly complexity can reduce this figure by up to two orders of magnitude. This paper discusses one potential solution which relies on consistent structural components that are easily manufactured in bulk quantities to facilitate general uses while also enabling high-precision mounting in designated payload slots. This proposed approach combines standardized struts and panels able to be connected and stacked in a variety of ways to form a modular structure from 1U subsections. For the subsections in need of higher precision, slots are milled and reamed from the same standard panel. Within these slots, card-like brackets are mounted to within 10 micrometer precision with the use of low-tolerance gauge spheres. A technique called “screw-pulling” secures these brackets such that the gauge spheres act as nearly single-point-of-contact datums. This approach allows payloads to be tested externally with minimal alignment shifts when re-integrated into the structure and is demonstrated with a 2.2 μm pixel size CMOS sensor and a 23 mm focal length lens

    NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics

    Get PDF
    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data. http://gcmd.nasa.gov

    Easing the Discovery of NASA and International Near-Real-Time Data Using the Global Change Master Directory

    Get PDF
    The Global Change Master Directory (GCMD) provides an extensive directory of descriptive and spatial information about data sets and data-related services, which are relevant to Earth science research. The directory's data discovery components include controlled keywords, free-text searches, and map/date searches. The GCMD portal for NASA's Land Atmosphere Near-real-time Capability for EOS (LANCE) data products leverages these discovery features by providing users a direct route to NASA's Near-Real-Time (NRT) collections. This portal offers direct access to collection entries by instrument name, informing users of the availability of data. After a relevant collection entry is found through the GCMD's search components, the "Get Data" URL within the entry directs the user to the desired data. http://gcmd.nasa.gov/r/p/gcmd_lance_nrt

    Preliminary Results from the CHOMPTT Laser Time-Transfer Mission

    Get PDF
    CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT) is a demonstration of precision ground-to-space time-transfer using a laser link to an orbiting CubeSat. The University of Florida-led mission is a collaboration with the NASA Ames Research Center. The 1U optical time-transfer payload was designed and built by the Precision Space Systems Lab at the University of Florida. The payload was integrated with a NASA Ames NOdeS-derived spacecraft bus to form a 3U spacecraft. The CHOMPTT satellite was successfully launched into low Earth orbit on 16 December 2018 on NASA’s ELaNa XIX mission using the Rocket Lab USA Electron vehicle. Here we describe the mission and report on the status of this unique technology demonstration. We use two satellite laser ranging facilities located at the Kennedy Space Center and Mount Stromlo, Australia to transmit nanosecond, 1064 nm laser pulses to the CHOMPTT CubeSat. These pulses are timed with an atomic clock on the ground and are detected by an avalanche photodetector on CHOMPTT. An event timer records the arrival time with respect to one of the two on-board chip-scale atomic clocks with an accuracy of 200 ps (6cm light-travel time). At the same time, a retroreflector returns the transmitted beam back to the ground. By comparing the transmitted and received times on the ground and the arrival time of the pulses at the CubeSat, the time difference between the ground and space clocks can be measured. This compact, power efficient and secure synchronization technology will enable advanced space navigation, communications, networking, and distributed aperture telescopes in the future

    Design and Prototyping of a Nanosatellite Laser Communications Terminal for the Cubesat Laser Infrared CrosslinK (CLICK) B/C Mission

    Get PDF
    The CubeSat Laser Infrared CrossLink (CLICK) mission goal is to demonstrate a low cost, high data rate optical transceiver terminal with fine pointing and precision time transfer in aleq1.5U form factor. There are two phases to the technology demonstration for the CLICK mission: CLICK-A downlink, and then CLICK-B/C crosslink and downlink. The topic of this paper is the design and prototyping of the laser communications (lasercom) terminal for the CLICK-B/C phase. CLICK B/C consists of two identical 3U CubeSats from Blue Canyon Technologies that will be launched together in Low Earth Orbit to demonstrate crosslinks at ranges between 25 km and 580 km with a data rate of ≥20 Mbps and a ranging capability better than 0.5 m. Downlinks with data rates of ≥10 Mbps will also be demonstrated to the Portable Telescope for Lasercom (PorTeL) ground station. Link analysis using current parameters & experimental results predicts successful crosslink & downlink communications and ranging. Moreover, closed-loop 3σ fine pointing error is predicted to be less than 39.66 μrad of the 121.0 μrad 1/e² transmit laser divergence. The status of the payload EDU and recent developments of the optomechanical and thermal designs are discussed

    Testing of the CubeSat Laser Infrared CrosslinK (CLICK-A) Payload

    Get PDF
    The CubeSat Laser Infrared CrosslinK (CLICK-A) is a risk-reduction mission that will demonstrate a miniaturized optical transmitter capable of ≥10 Mbps optical downlinks from a 3U CubeSat to aportable 30 cm optical ground telescope. The payload is jointly developed by MIT and NASA ARC, and is on schedule for a 2020 bus integration and 2021 launch. The mission purpose is to reduce risk to its follow-up in 2022, called CLICK-B/C, that plans to demonstrate ≥20 Mbps intersatellite optical crosslinks and precision ranging between two 3U CubeSats. The 1.4U CLICK-A payload will fly on a Blue Canyon Technologies 3U bus inserted into a 400 km orbit. The payload will demonstrate both the transmitter optoelectronics and the fine-pointing system based on a MEMS fast steering mirror, which enables precision pointing of its 1300 μrad full-width half-maximum (FWHM) downlink beam with anestimated error of 136.9 μrad (3-σ) for a pointing loss of -0.134 dB (3-σ) at the time of link closure. We present recent test results of the CLICK-A payload, including results from thermal-vacuum testing, beam characterization, functional testing of the transmitter, and thermal analyses including measurement of deformation due to the thermal loading of the MEMS FSM

    Deep Broadband Observations of the Distant Gamma-ray Blazar PKS 1424+240

    Full text link
    We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z0.6035z\ge0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hours of VERITAS observations from three years, a multiwavelength light curve and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1±0.3\pm0.3)×107\times10^{-7} ph m2^{-2}s1^{-1} above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02±0.08\pm0.08)×107\times10^{-7} ph m2^{-2}s1^{-1} above 120 GeV. The measured differential very high energy (VHE; E100E\ge100 GeV) spectral indices are Γ=\Gamma=3.8±\pm0.3, 4.3±\pm0.6 and 4.5±\pm0.2 in 2009, 2011 and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than τ=2\tau=2, where it is postulated that any variability would be small and occur on longer than year timescales if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.Comment: ApJL accepted March 17, 201

    CHOMPTT (CubeSat Handling of Multisystem Precision Timing Transfer): From Concept to Launch Pad

    Get PDF
    Here we present the evolution of a student satellite mission: CHOMPTT (CubeSat Handling of Multisystem Precision Time Transfer), from its original concept as a candidate for the University NanoSatellite Program 8 (UNP8), to a spacecraft ready for launch in Fall of 2017 on ELaNa XIX (Educational Launch of Nanosatellites). The 3U CubeSat houses a 1 kg, 1U OPTI (Optical Precision Timing Instrument) payload, designed and built at the University of Florida, and a 1.5U EDSNNODeS-derived bus from NASA Ames Research Center. The OPTI payload comprises of: 1) a supervisor board that handles payload data, power regulation, and mode settings, 2) an optics assembly of six 1 cm retroreflectors and four laser beacon diodes for ground-tracking; and 3) two fully redundant timing channels, each consisting of: a chip-scale atomic clock, a microprocessor with clock counter, a picosecond event timer, and an avalanche photodetector (APD) with band-pass filter. Several iterations of OPTI have been developed, tested, and designed to achieve its current functionality and design a laboratory breadboard design, a 1.5U high altitude balloon design, engineering unit design, and its current flight unit design. In-lab testing of the current OPTI design indicates a short-term precision of 100 ps, equivalent to a range accuracy of 3 cm necessary to achieve our primary objective of 200 ps time transfer error, and a long-term timing accuracy of 20 ns over one orbit (1.5 hours). After the spacecraft reaches its nominal 500 km orbit at a 85 degree inclination, an experimental laser ranging facility at Kennedy Space Center in Florida, will track and emit 1064 nm nanosecond optical pulses at the CHOMPTT spacecraft. The laser pulses will then reflect off the retroreflector array mounted on the nadir face of CHOMPTT, and return the pulse to the laser ranging facility where the laser ranging facility will record the round-trip duration of the laser pulses. At the same time the pulse arrives at the spacecraft and is reflected by the array, an APD will record the arrival time of the pulses at the nanosatellite. By comparing the arrival of the pulse at the CubeSat and the duration of the round-trip of the laser pulse, the clock discrepancy between the ground and CubeSat atomic clocks can be determined, in addition to the CubeSats range from the facility. The design and verification of the flight version of CHOMPTT will be reviewed and an overview of the lifetime development and progression of CHOMPTT from the inception to launch pad will be presented
    corecore