26 research outputs found

    Quantifying the spatiotemporal dynamics in a chorus frog (Pseudacris) hybrid zone over 30 years

    Get PDF
    © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Although theory suggests that hybrid zones can move or change structure over time, studies supported by direct empirical evidence for these changes are relatively limited. We present a spatiotemporal genetic study of a hybrid zone between Pseudacris nigrita and P. fouquettei across the Pearl River between Louisiana and Mississippi. This hybrid zone was initially characterized in 1980 as a narrow and steep “tension zone,” in which hybrid populations were inferior to parentals and were maintained through a balance between selection and dispersal. We reanalyzed historical tissue samples and compared them to samples of recently collected individuals using microsatellites. Clinal analyses indicate that the cline has not shifted in roughly 30 years but has widened significantly. Anthropogenic and natural changes may have affected selective pressure or dispersal, and our results suggest that the zone may no longer best be described as a tension zone. To the best of our knowledge, this study provides the first evidence of significant widening of a hybrid cline but stasis of its center. Continued empirical study of dynamic hybrid zones will provide insight into the forces shaping their structure and the evolutionary potential they possess for the elimination or generation of species

    Ecological Guild Evolution and the Discovery of the World's Smallest Vertebrate

    Get PDF
    Living vertebrates vary drastically in body size, yet few taxa reach the extremely minute size of some frogs and teleost fish. Here we describe two new species of diminutive terrestrial frogs from the megadiverse hotspot island of New Guinea, one of which represents the smallest known vertebrate species, attaining an average body size of only 7.7 mm. Both new species are members of the recently described genus Paedophryne, the four species of which are all among the ten smallest known frog species, making Paedophryne the most diminutive genus of anurans. This discovery highlights intriguing ecological similarities among the numerous independent origins of diminutive anurans, suggesting that minute frogs are not mere oddities, but represent a previously unrecognized ecological guild

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Combined next-generation sequencing and morphology reveal fine-scale speciation in Crocodile Skinks (Squamata: Scincidae:Tribolonotus)

    Get PDF
    Next-generation sequencing has vast potential to revolutionize the fields of phylogenetics and population genetics through its ability to collect genomic scale data sets of thousands of orthologous loci. Despite this potential, other types of data (e.g. morphology, ecology) remain important, particularly for studies endeavouring to delimit species. Here, we integrate next-generation sequencing with morphology to examine divergence between populations of Tribolonotus pseudoponceleti on the islands of Buka and Bougainville in the Solomon Archipelago. We used the Ion Torrent PGM to collect over 648 Mbp of sequence data for 12 samples, representing 1526 loci recovered from all samples, and 3342 were recovered from at least six samples. Genetic structure analyses strongly support the distinctiveness of these two populations, and Bayes factor delimitations decisively select speciation between Buka and Bougainville. Principal components and discriminant function analyses reveal concordant morphological divergence. Finally, demographic analyses via diffusion approximation and approximate Bayesian computation prefer a complex model of mid-Pleistocene divergence with migration, and a later decrease or cessation of migration and population size shift, suggesting a scenario in which migration was enabled by Pleistocene merging of these two islands, and limited when isolated by higher sea levels. Further analysis of four Sanger sequenced loci in IMa2 had limited power to distinguish among models including and excluding migration, but resulted in similar population size and divergence time estimates, although with much broader confidence intervals. This study represents a framework for how next-generation sequencing and morphological data can be combined and leveraged towards validating putative species and testing demographic scenarios for speciation.This research was funded by a Harvard University Museum of Comparative Zoology Ernst Mayr Travel Grant in Animal Systematics to ENR and National Science Foundation grant DEB 1146033 to CCA

    Two new species of Crocodile Skinks (Squamata: Scincidae: Tribolonotus) from the Solomon Archipelago

    No full text
    We describe two new species of the scincid lizard genus Tribolonotus from the islands of Buka and Choiseul in the Solomon Archipelago, closely related to, and previously included within, T. pseudoponceleti. One species, T. parkeri sp. nov., is endemic to Buka Island and was revealed in our previous study via taxonomically focused analyses of both next-generation sequencing data and morphology. Here, we also further support the validity of this species by more taxonomically comprehensive Bayesian species delimitation of three Sanger sequenced nuclear loci. The second species, T. choiseulensis sp. nov., is endemic to Choiseul Island and was revealed by an expanded morphological data analysis. These results suggest that numerous other species found on multiple island groups in the Solomon Archipelago may similarly represent complexes of multiple, closely related species, and that the biodiversity of the region is vastly underestimated

    The effects of sampling on delimiting species from multi-locus sequence data

    No full text
    a b s t r a c t As a fundamental unit in biology, species are used in a wide variety of studies, and their delimitation impacts every subfield of the life sciences. Thus, it is of utmost importance that species are delimited in an accurate and biologically meaningful way. However, due to morphologically similar, cryptic species, and processes such as incomplete lineage sorting, this is far from a trivial task. Here, we examine the accuracy and sensitivity to sampling strategy of three recently developed methods that aim to delimit species from multi-locus DNA sequence data without a priori assignments of samples to putative species. Specifically, we simulate data at two species tree depths and a variety of sampling strategies ranging from five alleles per species and five loci to 20 alleles per species and 100 loci to test (1) Structurama, (2) Gaussian clustering, and (3) nonparametric delimitation. We find that Structurama accurately delimits even relatively recently diverged (greater than 1.5 N generations) species when sampling 10 or more loci. We also find that Gaussian clustering delimits more deeply divergent species (greater than 2.5 N generations) relatively well, but is not sufficiently sensitive to delimit more recently diverged species. Finally, we find that nonparametric delimitation performs well with 25 or more loci if gene trees are known without error, but performs poorly with estimated gene genealogies, frequently over-splitting species and mis-assigning samples. We thus suggest that Structurama represents a powerful tool for use in species delimitation. It should be noted, however, that intraspecific population structure may be delimited using this or any of the methods tested herein. We argue that other methods, such as other species delimitation methods requiring a priori putative species assignments (e.g. SpeDeSTEM, Bayesian species delimitation), and other types of data (e.g. morphological, ecological, behavioral) be incorporated in conjunction with these methods in studies attempting to delimit species
    corecore