351 research outputs found

    Que mesurent les tests de CODB et de COA ?

    Get PDF
    Un des objectifs de cette recherche est d'examiner les différences entre les resultats obtenus par les tests de dosage des matières organiques biodégradables (MOB). L'autre objectif est de déterminer comment les résultats peuvent correspondre à la valeur vraie de la MOB. L'étude a été menée en employant un mode le mathématique qui tient compte des principes cinétiques et stoechiométriques.Le tableau 1 présente les exemples des équations de bilan de masse qui entrent dans le modèle. Celui-ci permet de suivre la croissance de la biomasse, la dégradation du substrat (MOB), le carbone organique dissous (COD), ainsi que la production et la dégradation des produits microbiens solubles (PMS). Les PMS, qui possèdent des poids moléculaires allant de moyens à élevés, sont produits durant le métabolisme normal des cellules (RITIMANN et al., 1987). Les PMS peuvent être divisés en deux groupes de produits associés: les PAU qui sont le résultat direct de l'utilisation du substrat et les PAB qui sont produits proportionnellement à la biomasse (PAB).Certaines hypothèses sont à la base des équations du bilan massique. La biomasse n'est constituée que d'hétérotrophes. La MOB est modélisée en tenant compte de substrats facilement et difficilement dégradables. Chaque substrat se distingue par sa valeur K inscrite au tableau 3. La densité de biomasse en début de test est de 1 mgA (2400 UFC/ml), sauf quand la densité est modifiée dans le modèle. Pour les besoins de la modélisation, les valeurs de MOB, de CODB et de biomasse ont eté converties en demande chimique en oxygène (DCO). Les facteurs de conversion utilisés sont: 1,42 mg de MOB exprimée en DCO/mg de MOB exprimee en solides volatils dissous, 4,16 x 10-7 mg DCO/cellule et 2,67 mg acétate exprimé en DCO/mg de C-acétate. Un ensemble de courbes typiques pour le modèle est présenté aux figures 1 et 2. La figure 1 montre les résultats obtenus pour un substrat facilement dégradable tandis que la figure 2 présente ceux obtenus pour un substrat difficilement dégradable. Dans les deux cas, la biomasse s'accroît graduellement pour atteindre un maximum, puis rediminue. Les vitesses et intensités de réaction dépendent toutefois beaucoup des cinétiques de dégradation de la MOB. Les deux figures traduisent l'accumulation continue des PMS, qui représentent des proportions respectives de 43% et 30% de la MOB d'origine pour les substrats facilement et difficilement dégradables. L'accumulation des PMS est importante, car la courbe de décroissance du COD est le résultat net de la MOB consommée moins les PMS accumulés. Ceci implique que le changement dans le niveau de COD, qui représente le paramètre de contrôle pour les tests CODB, n'égale pas la MOB vraie. Le CODB mesuré ne représenterait plutôt que 50 à 60 % de la MOB d'origine.La figure 3 montre la relation qui existe entre le CODB et la MOB pour les deux types de substrats. Le CODB n'est pas égal à la MOB, ce qui est démontré par l'écart observé par rapport à la droite d'équivalence de pente 1. Cette différence est due à deux phénomènes: I'accumulation des PMS dépend de la MOB, tandis que l'écart entre les deux types de substrat est le résultat des courbes s'approchant de Smin sur l'axe de la MOB, lorsque le CODB tend vers zéro. Ce résultat est significatif, car des études ont démontré que la MOB dans les eaux brutes contient surtout des substrats difficilement dégradables (LECHEVALLIER et al., 1991). Ainsi, faire l'hypothèse que le CODB soit égal à la MOB pour les substrats difficilement assimilables se traduirait par une importante sous-estimation de la MOB dans l'échantillon.La figure 4 montre la relation observée entre la biomasse maximum, employée avec les tests COA (carbone organique assimilable), et la vraie MOB pour les deux substrats. Cette figure présente aussi l'étalon de calibration proposé par van ter Kooij et al (1982), qui convertit le nombre de cellules en C-acétate (4,1 x 10 6 cellules par mg C-acétate). Ni le substrat facilement utilisable ni le substrat difficilement utilisable, ne s'approche de la courbe de calibration. Ces écarts sont causés par la variation du premier ordre en ordre zéro de l'équation de Monod et aussi parce que les courbes approchent le Smin où la croissance des cellules est presque nulle. Lorsque la MOB dans l'échantillon est principalement constituée d'un substrat difficilement dégradable, I'usage d'un étalon d'acétate produit une forte sous-estimation de la MOB vraie.La figure 5 montre la relation directe entre le CODB et le COA pour les deux types de substrats. L'augmentation du rapport CODB/COA avec la diminution de la MOB s'explique par le fait que la biomasse tend vers une croissance zéro lorsque la MOB s'approche de Smin. Cette figure démontre clairement qu'il existe une différence fondamentale entre les mesures des tests CODB et COA, lorsque la MOB tend vers Smin. Toutefois, le rapport CODB/COA est presque unitaire dans le cas du substrat facilement dégradable, quand la MOB se situe à l'intérieur des limites de détection pour le dosage du CODB (environ 100 mg/l à la figure 5). Ainsi, il est possible d'obtenir le même résultat avec les deux types de tests. Le modèle permet aussi d'examiner l'effet des concentrations en biomasse initiale pour une [MOB] fixée. Pour un substrat facilement dégradable, qui est entièrement consommé en présence d'un faible inoculum, la modélisation montre que le CODB et la biomasse maximum ne sont pas affectés. Cependant, le résultat diffère pour un substrat difficilement dégradable qui n'est pas entièrement consommé avec un inoculum de faible densité. Tel que présenté à la figure 6, le CODB et la biomasse maximum augmentent fortement avec la densité de l'inoculum. Cet effet est dû à la faible croissance de la biomasse qui survient en présence d'un inoculum de faible densité; la biomasse maximum et le COD minimum sont atteints après 30 jours. Avec un inoculum important, la biodégradation survient plus rapidement et le CODB maximum est atteint avant 30 jours.Batch type biodegradable organic material (BOM) tests are modelled using basic kinetic and stoichiometric principles. The modelling results reveal that for biodegradable dissolved organic carbon (BDOC) tests, the change in dissolved organic carbon (DOC) is not equal to BOM. The formation of soluble microbial products (SMP) and the degradation kinetics of the BOM must be considered to estimate the true BOM from BDOC results. For assimilable organic carbon (AOC) tests, using a calibration standard based on an easy to degrade substrate, such as acetate, does not necessarily give an accurate indication of the true BOM. The kinetics of BOM degradation must be estimated before an AOC test can be used to interpret the true BOM in a sample. The inoculum density can also influence the results of AOC and BDOC tests. When the BOM is hard to degrade, using a low density test can underestimate the amount of BDOC in a sample

    Improving lipid recovery from Scenedesmus wet biomass by surfactant-assisted disruption

    Get PDF
    Citation: Lai, Y. S., De Francesco, F., Aguinaga, A., Parameswaran, P., & Rittmann, B. E. (2016). Improving lipid recovery from Scenedesmus wet biomass by surfactant-assisted disruption. Green Chemistry, 18(5), 1319-1326. doi:10.1039/c5gc02159fMicroalgae-derived lipids are good sources of biofuel, but extracting them involves high cost, energy expenditure, and environmental risk. Surfactant treatment to disrupt Scenedesmus biomass was evaluated as a means to make solvent extraction more efficient. Surfactant treatment increased the recovery of fatty acid methyl ester (FAME) by as much as 16-fold vs. untreated biomass using isopropanol extraction, and nearly 100% FAME recovery was possible without any Folch solvent, which is toxic and expensive. Surfactant treatment caused cell disruption and morphological changes to the cell membrane, as documented by transmission electron microscopy and flow cytometry. Surfactant treatment made it possible to extract wet biomass at room temperature, which avoids the expense and energy cost associated with heating and drying of biomass during the extraction process. The best FAME recovery was obtained from high-lipid biomass treated with Myristyltrimethylammonium bromide (MTAB)- and 3-(decyldimethylammonio)-propanesulfonate inner salt (3_DAPS)-surfactants using a mixed solvent (hexane : isopropanol = 1 : 1, v/v) vortexed for just 1 min; this was as much as 160-fold higher than untreated biomass. The critical micelle concentration of the surfactants played a major role in dictating extraction performance, but the growth stage of the biomass had an even larger impact on how well the surfactants disrupted the cells and improved lipid extraction. Surfactant treatment had minimal impact on extracted-FAME profiles and, consequently, fuel-feedstock quality. This work shows that surfactant treatment is a promising strategy for more efficient, sustainable, and economical extraction of fuel feedstock from microalgae

    Archaea and Bacteria Acclimate to High Total Ammonia in a Methanogenic Reactor Treating Swine Waste

    Get PDF
    Citation: Esquivel-Elizondo, S., Parameswaran, P., Delgado, A. G., Maldonado, J., Rittmann, B. E., & Krajmalnik-Brown, R. (2016). Archaea and Bacteria Acclimate to High Total Ammonia in a Methanogenic Reactor Treating Swine Waste. Archaea-an International Microbiological Journal, 10. doi:10.1155/2016/4089684Inhibition by ammonium at concentrations above 1000mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H-2 accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH3 -N) from 890 +/- 295 to 2040 +/- 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than similar to 1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of similar to 2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis

    Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales

    Full text link
    Femtosecond time-resolved X-ray diffraction is used to study a photo-induced phase transition between two charge density wave (CDW) states in 1T-TaS2_2, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photo-induced I-CDW phase then develops through a nucleation/growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a non-conservative order parameter.Comment: 6 pages, 5 figure

    A multi-phase biogeochemical model for mitigating earthquake-induced liquefaction via microbially induced desaturation and calcium carbonate precipitation

    Get PDF
    A next-generation biogeochemical model was developed to explore the impact of the native water source on microbially induced desaturation and precipitation (MIDP) via denitrification. MIDP is a non-disruptive, nature-based ground improvement technique that offers the promise of cost-effective mitigation of earthquake-induced soil liquefaction under and adjacent to existing structures. MIDP leverages native soil bacteria to reduce the potential for liquefaction triggering in the short term through biogenic gas generation (treatment completed within hours to days) and over the longer term through calcium carbonate precipitation (treatment completed in weeks to months). This next-generation biogeochemical model expands earlier modeling to consider multi-phase speciation, bacterial competition, inhibition, and precipitation. The biogeochemical model was used to explore the impact of varying treatment recipes on MIDP products and by-products in a natural seawater environment. The case study presented herein demonstrates the importance of optimizing treatment recipes to minimize unwanted by-products (e.g., H2S production) or incomplete denitrification (e.g., nitrate and nitrite accumulation).</p

    Comparing biofilm models for a single species biofilm system

    Get PDF
    Abstract A benchmark problem was defined to evaluate the performance of different mathematical biofilm models. The biofilm consisted of heterotrophic bacteria degrading organic substrate and oxygen. Mathematical models tested ranged from simple analytical to multidimensional numerical models. For simple and more or less flat biofilms it was shown that analytical biofilm models provide very similar results compared to more complex numerical solutions. When considering a heterogeneous biofilm morphology it was shown that the effect of an increased external mass transfer resistance was much more significant compared to the effect of an increased surface area inside the biofilm

    Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd)

    Get PDF
    Background: Biologically, hydrogen (H-2) can be produced through dark fermentation and photofermentation. Dark fermentation is fast in rate and simple in reactor design, but H-2 production yield is unsatisfactorily low as < 4 mol H-2/ mol glucose. To address this challenge, simultaneous production of H-2 and ethanol has been suggested. Co-production of ethanol andH(2) requires enhanced formation of NAD(P) H during catabolism of glucose, which can be accomplished by diversion of glycolytic flux from the Embden-Meyerh-of-Parnas (EMP) pathway to the pentose-phosphate (PP) pathway in Escherichia coli. However, the disruption of pgi (phosphoglucose isomerase) for complete diversion of carbon flux to the PP pathway made E. coli unable to grow on glucose under anaerobic condition. Results: Here, we demonstrate that, when glucose-6-phosphate dehydrogenase (Zwf) and 6-phosphogluconate dehydrogenase (Gnd), two major enzymes of the PP pathway, are homologously overexpressed, E. coli.pgi can recover its anaerobic growth capability on glucose. Further, with additional deletions of Delta hycA,Delta hyaAB,Delta hybBC,Delta ldhA, and Delta frdAB, the recombinant.pgi mutant could produce 1.69 mol H-2 and 1.50 mol ethanol from 1 mol glucose. However, acetate was produced at 0.18 mol mol(-1) glucose, indicating that some carbon is metabolized through the Entner-Doudoroff (ED) pathway. To further improve the flux via the PP pathway, heterologous zwf and gnd from Leuconostoc mesenteroides and Gluconobacter oxydans, respectively, which are less inhibited by NADPH, were overexpressed. The new recombinant produced more ethanol at 1.62 mol mol(-1) glucose along with 1.74 mol H-2 mol(-1) glucose, which are close to the theoretically maximal yields, 1.67 mol mol(-1) each for ethanol andH(2). However, the attempt to delete the ED pathway in the.pgi mutant to operate the PP pathway as the sole glycolytic route, was unsuccessful. Conclusions: By deletion of pgi and overexpression of heterologous zwf and gnd in E. coli Delta hycA Delta hyaAB Delta hybBC Delta ldhA Delta frdAB, two important biofuels, ethanol andH(2), could be successfully co-produced at high yields close to their theoretical maximums. The strains developed in this study should be applicable for the production of other biofuels and biochemicals, which requires supply of excessive reducing power under anaerobic conditions

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link
    corecore