6,385 research outputs found

    Regional landform thresholds

    Get PDF
    Remote sensing technology allows us to recognize manifestations of regional thresholds, especially in the spatial characteristics of process agents. For example, a change in river channel pattern over a short distance reflects a threshold alteration in the physical controls of discharge and/or sediment. It is, therefore, a valuable indication of conditions as they exist. However, we probably will have difficulty determining whether the systemic parameters are now close to threshold conditions at which a different change will occur. This, of course, is a temporal and magnitude problem which is difficult to solve from the spatial characteristics

    Hydrodynamical evolution near the QCD critical end point

    Full text link
    Hydrodynamical calculations have been successful in describing global observables in ultrarelativistic heavy ion collisions, which aim to observe the production of the quark-gluon plasma. On the other hand, recently, a lot of evidence that there exists a critical end point (CEP) in the QCD phase diagram has been accumulating. Nevertheless, so far, no equation of state with the CEP has been employed in hydrodynamical calculations. In this paper, we construct the equation of state with the CEP on the basis of the universality hypothesis and show that the CEP acts as an attractor of isentropic trajectories. We also consider the time evolution in the case with the CEP and discuss how the CEP affects the final state observables, such as the correlation length, fluctuation, chemical freezeout, kinetic freezeout, and so on. Finally, we argue that the anomalously low kinetic freezeout temperature at the BNL Relativistic Heavy Ion Collider suggests the possibility of the existence of the CEP.Comment: 13 pages, 12 figures, accepted for publication in Physical Review

    Surface roughness during depositional growth and sublimation of ice crystals

    Get PDF
    Full version of an earlier discussion paper (Chou et al. 2018)Ice surface properties can modify the scattering properties of atmospheric ice crystals and therefore affect the radiative properties of mixed-phase and cirrus clouds. The Ice Roughness Investigation System (IRIS) is a new laboratory setup designed to investigate the conditions under which roughness develops on single ice crystals, based on their size, morphology and growth conditions (relative humidity and temperature). Ice roughness is quantified through the analysis of speckle in 2-D light-scattering patterns. Characterization of the setup shows that a supersaturation of 20 % with respect to ice and a temperature at the sample position as low as-40 °C could be achieved within IRIS. Investigations of the influence of humidity show that higher supersaturations with respect to ice lead to enhanced roughness and irregularities of ice crystal surfaces. Moreover, relative humidity oscillations lead to gradual ratcheting-up of roughness and irregularities, as the crystals undergo repeated growth-sublimation cycles. This memory effect also appears to result in reduced growth rates in later cycles. Thus, growth history, as well as supersaturation and temperature, influences ice crystal growth and properties, and future atmospheric models may benefit from its inclusion in the cloud evolution process and allow more accurate representation of not just roughness but crystal size too, and possibly also electrification properties.Peer reviewe

    Polymer Structures on Surface Acoustic Wave Biosensors

    Get PDF
    The influence of surface structuring on surface acoustic wave (SAW) biosensor signals has been investigated. Polymer structures on the sensor surfaces were applied by lithography or by self-assembling of polystyrene microparticles. In first experiments, structured and unstructured sensors led to similar results in a model affinity assay using streptavidin and biotinylated protein. On the other hand, structuring had a strong effect on SAW sensor signals obtained by protein adsorption on parylene C coated sensors. Depending on the protein, both decreased (albumin, streptavidin) and increased (fibrinogen) signals were observed with structured SAW sensors. Particularly the latter could contribute to facilitated blood analysis in the future

    Modeling and Real-Time Simulation of a Vascularized Liver Tissue

    Get PDF
    International audienceIn Europe only, about 100,000 deaths per year are related to cirrhosis or liver cancer. While surgery remains the option that offers the foremost success rate against such pathologies, several limitations still hinder its widespread development. Among the limiting factors is the lack of accurate planning systems, which has been a motivation for several recent works, aiming at better resection planning and training systems, relying on pre-operative imaging, anatomical and biomechanical modelling. While the vascular network in the liver plays a key role in defining the operative strategy, its influence at a biomechanical level has not been taken into account. In the paper we propose a real-time model of vascularized organs such as the liver. The model takes into account separate constitutive laws for the parenchyma and vessels, and defines a coupling mechanism between these two entities. In the evaluation section, we present results of in vitro porcine liver experiments that indicate a significant influence of vascular structures on the mechanical behaviour of tissue. We confirm the val- ues obtained in the experiments by computer simulation using standard FEM. Finally, we show that the conventional modelling approach can be efficiently approximated with the proposed composite model capable of real-time calculations
    • …
    corecore