454 research outputs found
Dynamic aperture studies during collisions in the LHC
The dynamic aperture during collisions in the LHC is mainly determined by the beam-beam interactions and by multipole errors of the high gradient quadrupoles in the interaction regions. The computer code JJIP has been modified to accommodate the LHC lattice configuration and parameters and is employed in this study. Simulations over a range of machine parameters are carried out, and results of preliminary investigation are presented
Recommended from our members
Sensitivity of peatland litter decomposition to changes in temperature and rainfall
Changes to climate are projected over the next 50 years for many peatland areas. As decomposition of peatforming vegetation is likely to be intrinsically linked to these changes in climate, a clear understanding of climate-peat dynamics is required. There is concern that increased temperature and decreased precipitation could increase the rate of decomposition and put the carbon sink status of many peatlands at risk, yet few studies
have examined the impact of both climatic factors together. To better understand the sensitivity of peatland decomposition to changes in both temperature and precipitation and their interaction, we conducted a shortterm
laboratory experiment in which plant litters and peat soil were incubated, in isolation, in a factorial design.
Treatments simulated baseline and projected climate averages derived from the latest UK climate change projections (UKCP09) for Exmoor, a climatically marginal peatland in SW England. Regular carbon dioxide flux
measurements were made throughout the simulation, as well as total mass loss and total dissolved organic carbon (DOC) leached. The largest effect on carbon loss in this multifactor experiment was from substrate, with
Sphagnum/peat releasing significantly less C in total during the experiment than dwarf shrubs/graminoids.
Climate effects were substrate specific, with the drier rainfall treatment increasing the DOC leaching from
Calluna, but decreasing it from Sphagnum. Partitioning between CO2 and DOC was also affected by climate, but
only for the peat and Sphagnum samples, where the future climate scenarios (warmer and drier) resulted in a
greater proportion of C lost in gaseous form. These results suggest that indirect effects of climate through
changes in species composition in peatlands could ultimately turn out to be more important for litter decomposition
than direct effects of climate change from increased temperatures and decreased rainfall
Masculinity as Governance: police, public service and the embodiment of authority, c. 1700-1850
About the book: Public Men offers an introduction to an exciting new field: the history of masculinities in the political domain and will be essential reading for students and specialists alike with interests in gender or political culture. By building upon new work on gender and political culture, these new case studies explore the gendering of the political domain and the masculinities of the men who have historically dominated it. As such, Public Men is a major contribution to our understanding of the history of Britain between the Eighteenth and the Twentieth centuries
Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance
The persistence of reef building corals is threatened by human-induced environmental change. Maintaining coral reefs into the future requires not only the survival of adults, but also the influx of recruits to promote genetic diversity and retain cover following adult mortality. Few studies examine the linkages among multiple life stages of corals, despite a growing knowledge of carryover effects in other systems. We provide a novel test of coral parental conditioning to ocean acidification (OA) and tracking of offspring for 6 months post-release to better understand parental or developmental priming impacts on the processes of offspring recruitment and growth. Coral planulation was tracked for 3 months following adult exposure to high pCO2 and offspring from the second month were reciprocally exposed to ambient and high pCO2 for an additional 6 months. Offspring of parents exposed to high pCO2 had greater settlement and survivorship immediately following release, retained survivorship benefits during 1 and 6 months of continued exposure, and further displayed growth benefits to at least 1 month post release. Enhanced performance of offspring from parents exposed to high conditions was maintained despite the survivorship in both treatments declining in continued exposure to OA. Conditioning of the adults while they brood their larvae, or developmental acclimation of the larvae inside the adult polyps, may provide a form of hormetic conditioning, or environmental priming that elicits stimulatory effects. Defining mechanisms of positive acclimatization, with potential implications for carry over effects, cross-generational plasticity, and multi-generational plasticity, is critical to better understanding ecological and evolutionary dynamics of corals under regimes of increasing environmental disturbance. Considering environmentally-induced parental or developmental legacies in ecological and evolutionary projections may better account for coral reef response to the chronic stress regimes characteristic of climate change
Prediction of uncomplicated pregnancies in obese women: A prospective multicentre study
BACKGROUND: All obese pregnant women are considered at equal high risk with respect to complications in pregnancy and birth, and are commonly managed through resource-intensive care pathways. However, the identification of maternal characteristics associated with normal pregnancy outcomes could assist in the management of these pregnancies. The present study aims to identify the factors associated with uncomplicated pregnancy and birth in obese women, and to assess their predictive performance. METHODS: Data form obese women (BMI ≥ 30 kg/m 2 ) with singleton pregnancies included in the UPBEAT trial were used in this analysis. Multivariable logistic regression was used to identify sociodemographic, clinical and biochemical factors at 15 +0 to 18 +6 weeks' gestation associated with uncomplicated pregnancy and birth, defined as delivery of a term live-born infant without antenatal or labour complications. Predictive performance was assessed using area under the receiver operating characteristic curve (AUROC). Internal validation and calibration were also performed. Women were divided into fifths of risk and pregnancy outcomes were compared between groups. Sensitivity, specificity, and positive and negative predictive values were calculated using the upper fifth as the positive screening group. RESULTS: Amongst 1409 participants (BMI 36.4, SD 4.8 kg/m 2 ), the prevalence of uncomplicated pregnancy and birth was 36% (505/1409). Multiparity and increased plasma adiponectin, maternal age, systolic blood pressure and HbA1c were independently associated with uncomplicated pregnancy and birth. These factors achieved an AUROC of 0.72 (0.68-0.76) and the model was well calibrated. Prevalence of gestational diabetes, preeclampsia and other hypertensive disorders, preterm birth, and postpartum haemorrhage decreased whereas spontaneous vaginal delivery increased across the fifths of increasing predicted risk of uncomplicated pregnancy and birth. Sensitivity, specificity, and positive and negative predictive values were 38%, 89%, 63% and 74%, respectively. A simpler model including clinical factors only (no biomarkers) achieved an AUROC of 0.68 (0.65-0.71), with sensitivity, specificity, and positive and negative predictive values of 31%, 86%, 56% and 69%, respectively. CONCLUSION: Clinical factors and biomarkers can be used to help stratify pregnancy and delivery risk amongst obese pregnant women. Further studies are needed to explore alternative pathways of care for obese women demonstrating different risk profiles for uncomplicated pregnancy and birth
Mitigation of carbon using Atriplex nummularia revegetation
The use of abandoned or marginally productive land to mitigate greenhouse gas emissions may avoid competition with food and water production. Atriplex nummularia Lindl. is a perennial shrub commonly established for livestock forage on saline land, however, its potential for carbon mitigation has not been systematically evaluated. Similarly, although revegetation is an allowable activity to mitigate carbon within Article 3.4 of the United Nations Framework Convention on Climate Change's Kyoto Protocol, there is a paucity of information on rates of carbon mitigation in soils and biomass through this mechanism. For six sites where A. nummularia had been established across southern Australia four were used to assess changes in soil carbon storage and four were used to develop biomass carbon sequestration estimates. A generalised allometric equation for above and below ground biomass was developed, with a simple crown volume index explaining 81% of the variation in total biomass. There were no significant differences in soil organic carbon storage to 0.3 m or 2 m depth compared to existing agricultural land-use. Between 2.2 and 8.3 Mg C ha−1 or 0.2–0.6 Mg C ha−1 yr−1 was sequestered in above and below ground biomass and this translates to potential total sequestration of 1.1–3.6 Tg C yr−1 on saline land across Australia. Carbon income and forage grazing may thus provide a means to finance the stabilization of compromised land
Recovery of Sphagnum from drought is controlled by species-specific moisture thresholds
As the largest terrestrial carbon (C) store, peatlands are vital to meeting climate targets. Sphagnum, a genus of ca. 350 species, sustains many peatlands through its high water content and chemistry which inhibits decomposition and vascular plant proliferation. However, many peatlands face increased risk of drought due to climate change, and how Sphagnum will respond and recover from drought is unknown. We measured moisture content, CO2 and methane (CH4) flux, and photosynthetic pigments in two species, S. palustre and S. squarrosum, over increasing drought (1–10 weeks) and recovery (1–10 weeks) periods. We identified biomass moisture thresholds of 12 g g− 1 (S. palustre) and 18 g g− 1 (S. squarrosum) below which irreversible damage occurred to photosynthesis. Due to higher moisture retention, and a lower moisture threshold, S. palustre withstood longer drought than S. squarrosum. These species-specific thresholds provide important insight for modelling peatland C sinks and for sustainable peatland restoration
From polyps to pixels: understanding coral reef resilience to local and global change across scales
Abstract Context Coral reef resilience is the product of multiple interacting processes that occur across various interacting scales. This complexity presents challenges for identifying solutions to the ongoing worldwide decline of coral reef ecosystems that are threatened by both local and global human stressors. Objectives We highlight how coral reef resilience is studied at spatial, temporal, and functional scales, and explore emerging technologies that are bringing new insights to our understanding of reef resilience. We then provide a framework for integrating insights across scales by using new and existing technological and analytical tools. We also discuss the implications of scale on both the ecological processes that lead to declines of reefs, and how we study those mechanisms. Methods To illustrate, we present a case study from Kāneʻohe Bay, Hawaiʻi, USA, linking remotely sensed hyperspectral imagery to within-colony symbiont communities that show differential responses to stress. Results In doing so, we transform the scale at which we can study coral resilience from a few individuals to entire ecosystems. Conclusions Together, these perspectives guide best practices for designing management solutions that scale from individuals to ecosystems by integrating multiple levels of biological organization from cellular processes to global patterns of coral degradation and resilience
Advice or exercise for chronic whiplash disorders? Design of a randomized controlled trial
BACKGROUND: Whiplash-associated disorder (or "whiplash") is a common condition incurring considerable expense in social and economic terms. A lack of research on effective therapy for patients with chronic whiplash associated disorders prompted the design of the current study. The primary aim of this randomised controlled trial is to determine the effects of a physical activity program for people with chronic (symptoms of > 3 months duration) whiplash. A secondary aim is to determine if pain severity, level of disability and fear of movement/(re)injury predict response to a physical activity program. METHODS / DESIGN: This paper presents the rationale and design of a randomised controlled trial examining the effects of advice and individualized sub-maximal exercise programs in the treatment of whiplash associated disorders. DISCUSSION: This paper highlights the design, methods and operational aspects of a significant clinical trial in the area of whiplash and chronic pain
- …
