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Objectives  We highlight how coral reef resilience 
is studied at spatial, temporal, and functional scales, 
and explore emerging technologies that are bringing 
new insights to our understanding of reef resilience. 
We then provide a framework for integrating insights 
across scales by using new and existing technologi-
cal and analytical tools. We also discuss the implica-
tions of scale on both the ecological processes that 
lead to declines of reefs, and how we study those 
mechanisms.

Abstract 
Context  Coral reef resilience is the product of mul-
tiple interacting processes that occur across various 
interacting scales. This complexity presents chal-
lenges for identifying solutions to the ongoing world-
wide decline of coral reef ecosystems that are threat-
ened by both local and global human stressors.

Supplementary Information  The online version 
contains supplementary material available at https://​doi.​
org/​10.​1007/​s10980-​022-​01463-3.
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Methods  To illustrate, we present a case study 
from Kāneʻohe Bay, Hawaiʻi, USA, linking remotely 
sensed hyperspectral imagery to within-colony sym-
biont communities that show differential responses to 
stress.
Results  In doing so, we transform the scale at which 
we can study coral resilience from a few individuals 
to entire ecosystems.
Conclusions  Together, these perspectives guide best 
practices for designing management solutions that 
scale from individuals to ecosystems by integrating 
multiple levels of biological organization from cellu-
lar processes to global patterns of coral degradation 
and resilience.

Keywords  Scaling · Cross-scale · Remote sensing · 
Sustainability

Introduction

Scale is fundamental to our understanding of any 
system, particularly given that our observations are 
directly affected by an integration of processes acting 
at multiple scales (Wiens 1989; Levin 1992) posed 
that the ‘central problem in ecology’ is that the scale 
of observations is often different than the scale of the 
process being studied. Multiple facets of scale need 
to be considered, including grain and extent (Turner 
et  al. 2001). Grain is the size of individual units of 
observation, such as a coral polyp or a transect. 
Extent is the domain of the study, such as a cell or 
an archipelago. The grain and extent of a study define 
the limits for which scale-dependent inferences can 
be drawn, given that information content often cor-
relates with both. Therefore, considering ecosystems 
as complex hierarchical systems, where biological 
organization encompasses a wide range of scales, 
from microbes within individuals to ecosystems con-
nected by dispersal of organisms across thousands 
of kilometers, allows for a deeper understanding of 
ecological change and a greater ability to predict and 
address those changes (Allen and Starr 1982; Wiens 
1989; Peterson et al. 1998).

Coral reefs are complex hierarchical systems that 
host a wide diversity of marine life and provide vital 
ecosystem services (Moberg and Folke 1999; Hoegh-
Guldberg et  al. 2019), but are threatened worldwide 
by multiple local and global stressors (Jackson et al. 

2001; Pandolfi et al. 2003; Hughes et al. 2017). Criti-
cal to understanding the impact of these stressors is 
our ability to measure change, which can manifest 
on different spatial, temporal, and functional scales. 
Examples include shifts in the relative abundance 
of species and their size classes, to wholesale dif-
ferences in the functioning of the ecosystem. Much 
of what has been observed over the past 70 years of 
coral reef research has focused on the relative spa-
tial cover of corals (Hughes et al. 2010), given their 
foundational role as habitat generators and ecosystem 
engineers. However, ecological change is occurring at 
multiple scales of biological organization, and mod-
ern technologies are now rapidly improving our abil-
ity to assess changes on reefs across scales that range 
from cellular to global (Calders et al. 2020).

One property of complex systems that deter-
mines ecosystem change is resilience, which can be 
viewed as ecological resilience—the capacity of an 
ecosystem to withstand disturbance without chang-
ing its overall identity in terms of structure and func-
tion (Holling 1973; Gunderson 2000; Nyström et al. 
2008)—or from a focus on stability, termed engineer-
ing resilience, which can be measured as the speed 
of recovery, or return to equilibrium, following a 
disturbance (Holling and Meffe 1996). Resilience on 
coral reefs can scale from the physiology of individ-
ual organisms, to the persistence of an entire reef, to 
the broader linked social-ecological system (Jackson 
1991; Hatcher 1997; Nyström et al. 2008; Roche et al. 
2018) (Fig. 1). For example, studying the regulation 
of proteins, enzymes, and individual genes across 
the coral holobiont (i.e., the coral animal, Symbio-
diniaceae, and the microbiome) is needed to under-
stand resistance to stressors (Bourne et al. 2016; Bay 
et al. 2017). Predicting the potential for selection can 
be further understood at the grain size of a popula-
tion. For example, as disturbances cause differen-
tial mortality of susceptible coral colonies, resistant 
genotypes will persist, increasing the frequency of 
beneficial genes or alleles in the population. Further 
implications of resilience are evidenced at the scale 
of ecological communities, including the well-refer-
enced example of coral to macroalgal phase shifts of 
reef benthic communities (Hughes 1994). Beyond the 
scale of a community, reefs are connected through lar-
val dispersal by processes which interact with climate 
and biophysical gradients to establish the connectiv-
ity of multiple reefs within and among archipelagos. 
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Thus, each of these scales can be explored at multi-
ple grain sizes and extents using a variety of tools and 
observations designed to understand the underlying 
processes and interactions driving local and global 
change.

Here we explore how coral reef resilience could be 
better understood by bridging investigations across 
multiple levels of biological organization and scales 
(Fig.  1). We review how data are collected at each 
level, highlight recent technological advances, and 
discuss implications for understanding cross-scale 
phenomena. Additionally, we present a framework 
for drawing inference across multiple measures and 
multiple scales, ranging from polyps to pixels, using a 
case study in Kāneʻohe Bay, Hawaiʻi, USA. This per-
spective provides a framework for bridging between 
molecular studies and remote sensing to tell a more 
complete story that better describes coral reef resil-
ience through the lens of cross-scale resilience theory.

Tools and advances across scales of biological 
organization

Cell

‘Omics’ tools (e.g., genomics, epigenomics, transcrip-
tomics, proteomics and metabolomics) are at the fore-
front of the study of the intracellular aspects of coral. 
These tools have greatly increased our understanding 

of fine-scale population connectivity and genetic 
structure, adaptation and acclimatization to environ-
mental change, symbiont community dynamics, and 
sublethal responses to environmental stressors, dis-
ease, and recovery (Vega Thurber et al. 2009; Barshis 
et  al. 2013; Dixon et  al. 2015; Seneca and Palumbi 
2015; Voolstra et  al. 2015; Kenkel and Matz 2016; 
Putnam et al. 2016; Forsman et al. 2020; Roach et al. 
2021). For example, such approaches have been used 
to determine the genomic basis of coral resilience to 
climate change (i.e., what genes underlie thermal tol-
erance) and to what degree thermotolerance is driven 
by genetic adaptation versus physiological plastic-
ity (Barshis et al. 2013; Palumbi et al. 2014). These 
advances enable the selection of thermotolerant gen-
otypes for coral restoration and other human inter-
ventions to increase coral persistence under climate 
change, such as assisted gene flow or translocation 
(National Academies of Sciences, Engineering, and 
Medicine 2019a). ‘Omics’ tools have the advantage 
that only a small tissue sample or even single cells 
collected in the field or lab can generate an immense 
amount of data (e.g., millions of sequence-reads per 
individual). This convenience is balanced by the need 
for specialized expertise and equipment, high costs 
of lab preparation and sequencing [e.g., Restriction-
site Associated DNA Sequencing (RAD-Seq) and 
RNAseq] along with the development of bioinfor-
matic pipelines, and computational constraints of big 
data generation.

Fig. 1   Multiple spatial and biological scales used to study 
reef processes and dynamics that can vary in extent and grain 
exemplified for Montipora capitata in Kāneʻohe Bay, Hawaiʻi, 
USA [Image credits: (Region—Reef) ESRI basemap imagery, 

(Pixel) Joshua Levy, (Ecosystem, Population-Polyp) Raphael 
Ritson-Williams, (Community) Ingrid Knapp, (Cell)–Shayle 
Matsuda]



740	 Landsc Ecol (2023) 38:737–752

1 3
Vol:. (1234567890)

Multiple advances in cellular studies of corals are 
paving a path towards greater applications to conser-
vation solutions. First, sequence data and metadata 
are typically deposited in freely and publicly avail-
able repositories [e.g., NCBI Sequence Read Archive 
(Leinonen et al. 2010)], offering potential avenues for 
broader research endeavors spanning across coral spe-
cies and multiple stressors. Technological advances 
also continue to reduce costs of both sequencing 
and computation of sequence data. Together, these 
advances will lead to greater availability and applica-
tion of these tools as the field continues to progress. 
Nonetheless, small sample sizes at this level of bio-
logical organization likely under-represent the func-
tional and genetic diversity of corals and conditions, 
and thus a scale-gap occurs in making broad infer-
ences from such localized data.

Polyp

Single polyps originating from planula larvae form 
the ‘individual’ level of biological organization for 
corals, and many polyps together form a coral colony. 
Studies at the larval and polyp scale are key to under-
standing fundamental biological processes in corals, 
such as settlement and metamorphosis, establish-
ment and maintenance of symbiosis, and formation 
of calcium carbonate skeletons, which in turn gov-
ern resilience at higher levels of organization. Polyp 
biology has largely been informed by studying coral 
reproduction (Harrison 2011), where researchers typ-
ically collect coral gametes in the field and conduct 
laboratory experiments to understand patterns of fer-
tilization, dispersal, settlement, and post-settlement 
ecology (Ritson-Williams et  al. 2009). Research on 
coral larvae spans from behavior (Dixson et al. 2014), 
physiology (Gleason and Hofmann 2011), and ecol-
ogy (Ritson-Williams et  al. 2016) to genomics and 
transcriptomics (Polato et al. 2013; Kirk et al. 2018; 
Fuller et al. 2020), using many of the same techniques 
applied to the cellular processes described earlier.

Studying coral polyps and larvae has generally 
been limited to laboratory experiments because of 
their small size and the low probability of observing 
settlement and early post-settlement life stages in situ 
(but see Carlon and Olson 1993). However, hundreds 
to thousands of larvae can be grown and settled in the 
laboratory (Ritson-Williams et  al. 2016), and recent 
technological advances are increasing the success and 

accessibility of spawning corals in ex situ closed mes-
ocosms (Craggs et al. 2017), accelerating research at 
this scale. In situ sampling of established recruits over 
time for population genetic analyses, however, could 
enable integration over multiple time scales, allowing 
us to track changes in genotypic diversity if a habitat 
is surveyed repeatedly before and after a disturbance 
event. Further, there is evidence that symbionts (and 
by proxy, physiologic resistance to stress) can vary 
across microhabitats found within a single coral col-
ony (Rowan et al. 1997), and there have been recent 
advances in single cell ‘omic techniques that allow 
for measuring variation across polyps within a holo-
biont, so we expect that our understanding of polyp 
level biology as it relates to aspects of coral resilience 
will greatly increase in the near future.

Holobiont

The coral colony is composed of many individual pol-
yps that, together with the microbiome and symbiotic 
microalgae in the family Symbiodiniaceae (LaJeu-
nesse et al. 2018), form the coral holobiont. Individ-
ual holobionts have variable responses to stress (Bar-
shis et  al. 2013; Drury et  al. 2017; Ritson-Williams 
and Gates 2020). This variability in stress response 
was classically studied using ecology and physiol-
ogy (Edmunds and Gates 2008) but has recently 
progressed using transcriptomics (Kenkel and Matz 
2016; Kirk et al. 2018), genomics (Bay and Palumbi 
2014; Howells et  al. 2016; Fuller et  al. 2020), and 
microbiology (Bourne et  al. 2016). Genetic tech-
niques have greatly increased our knowledge of the 
diversity of coral-associated symbionts and microbes 
(Rowan and Powers 1992; Vega Thurber et al. 2009; 
Hernandez-Agreda et  al. 2017; LaJeunesse et  al. 
2018), and many studies have demonstrated how 
coral holobiont performance and resilience are linked 
to the composition and diversity of Symbiodiniaceae 
(Iglesias-Prieto et al. 1992; Glynn et al. 2001; Berkel-
mans and Van Oppen 2006; LaJeunesse et  al. 2010; 
Cunning et al. 2016; Hume et al. 2019), other micro-
eukaryotes (Kwong et  al. 2019), bacteria (Ziegler 
et  al. 2017; Boilard et  al. 2020), and viruses (Vega 
Thurber et al. 2017).

The clonal properties of corals provide an advan-
tage for research such that genetically identical frag-
ments of the same colony can be used as replicates 
in experimental manipulations. Importantly, while the 
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identity of the coral animal may remain fixed across 
these replicate fragments, microbial partners may 
vary (Rowan et  al. 1997), and can even be directly 
manipulated to study and/or generate specific holo-
biont combinations and phenotypes, including stress 
tolerance (Rosado et  al. 2019; Cunning and Baker 
2020). However, microbial manipulations can be lim-
ited in both grain and extent, and therefore may not 
translate well to broader scales. Advances in study-
ing coral microbiomes, transcriptomics, and genom-
ics will allow for increasing the extent of studies on 
the variability of coral holobionts, demonstrating the 
research potential at this organizational scale. Mathe-
matical modeling approaches applied to coral-symbi-
ont interactions (e.g., dynamic energy budget theory; 
(Muller et  al. 2009; Cunning et  al. 2017), may also 
help to mechanistically link environmental impacts 
on the coral holobiont to higher levels of biological 
organization (e.g., Martin et al. 2013).

Population

Population-level analyses of corals have improved 
our understanding of coral resilience through iden-
tification of cryptic species (Rose et  al. 2018; Fors-
man et al. 2020; Burgess et al. 2021), inferred mech-
anisms of adaptive potential (Knowlton and Leray 
2015; Bay et  al. 2017), characterization of relation-
ships among populations and dispersal patterns 
(Toonen et  al. 2011; Drury et  al. 2018; Matz et  al. 
2018), and attribution of key processes driving pop-
ulation dynamics (Madin and Connolly 2006; Roth 
et al. 2010; Hughes et al. 2019; Dietzel et al. 2021). 

Population-level molecular analyses and coral geno-
typing have informed predictions of future impacts of 
environmental change (Selkoe et al. 2016; Bay et al. 
2017; Underwood et al. 2018; Fuller et al. 2020), and 
resistance to disease (Vollmer and Kline 2008). Popu-
lation dynamic studies of corals have revealed the 
importance of variation in recruitment (Hughes and 
Tanner 2000; Edmunds et  al. 2010) and overall size 
structure (Bak and Meesters 1999; Dietzel et al. 2020, 
2021) in determining resistance and recovery from 
disturbance.

Despite early calls for coral demography to be the 
center of coral population studies (Connell 1973; 
Hughes 1984), the need to move beyond measures of 
percent cover for corals and include coral demogra-
phy are still being echoed today (Edmunds and Riegl 
2020). Further, measures of vital rates (e.g., growth, 
survival, fecundity), and their incorporation in mod-
eling the future trajectory of corals is understudied. 
One challenge to demographic studies is the complex 
life history of corals that involve a variety of repro-
ductive strategies and complex growth, but also fis-
sion, fusion, and shrinkage (Edmunds and Riegl 
2020). Advances in photogrammetry and 3-dimen-
sional modeling of coral reef systems are providing 
new pathways for studying coral population dynam-
ics (Burns et al. 2015) (Fig. 2), and in particular coral 
size frequency (Burns et al. 2016; Hernández-Landa 
et al. 2020). This emerging method can enable us to 
better estimate the complex 3-dimensional structures 
made by corals without the need for in situ observa-
tions, expanding how we estimate coral resilience in a 
changing world.

Fig. 2   3D modeling of a coral reef system across multiple spa-
tial scales. A Close-up of an area within the Waiʻōpae coast-
line on Hawai‘i island showing individual coral colonies with 
inset map showing spatial coverage of the survey area recon-
structed in 3D using aerial images. B Oblique view of the 3D 
model of the same location (m-resolution), with IVAN multiro-
tor aerial Unmanned Aircraft Vehicle (UAV) platform shown 

in inset photo. C Oblique view of a 3D model of coral colonies 
(mm-resolution) and D a 3D model of an individual colony 
(mm-resolution) reconstructed from this same location, both 
generated with underwater Structure from Motion (SfM) pho-
togrammetry techniques (Image credit: Burns and Perroy, UH 
Hilo)
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Community

Community-level studies of corals reefs have 
increased our understanding of how biotic interac-
tions, diversity, and the role of corals as habitat engi-
neers relate to reef resilience. Biotic interactions can 
play a major role in driving coral community com-
position through competition (e.g., among corals and 
algae), predation, and ecological feedbacks such as 
herbivory effects. The role of interactions between 
corals, algae, and herbivores in shaping reef resil-
ience in particular has received considerable atten-
tion (Nyström and Folke 2001; Bellwood et al. 2004; 
Mumby et al. 2007; Hughes et al. 2010; Steneck et al. 
2018), as herbivory has been identified as a key pro-
cess determining whether reefs might rapidly transi-
tion from coral dominated to algae dominated reefs 
(Hughes et  al. 2007; Mumby et  al. 2007; Burkepile 
and Hay 2008; Steneck et  al. 2019). Community-
level studies also include the implications of diver-
sity (Warwick and Clarke 1990; Paulay 1997), and 
coral community structure (Loya et al. 2001; Hughes 
et al. 2018) on resilience. Studies on coral assemblage 
effects on the broader reef community have also been 
critical for understanding reef resilience, such as the 
ecological effects of coral declines on fish assem-
blages (Pratchett et  al. 2008; Fukunaga et  al. 2020), 
and how reduced structural complexity leads to broad 
scale community change (Alvarez-Filip et al. 2009).

Compared to other levels of biological organiza-
tion on coral reefs, studying benthic communities can 
be done relatively inexpensively with simple equip-
ment and methods. Basic metrics such as percent 
cover of coral can be obtained relatively rapidly and 
across large geographic scales by researchers and 
community (formally termed “citizen”) scientists 
alike (Aronson et  al. 1994; Hodgson 1999; Stuart-
Smith et  al. 2017). However, the simplicity of the 
tools needed belies the importance of an in-depth 
knowledge of the natural history of the focal commu-
nity, often integrating an understanding of each of the 
other levels of biological organization discussed here. 
Similarly, given the lack of standardized methodolo-
gies through the relatively long history of monitoring 
coral communities, comparing data sets across spatial 
and temporal scales can be challenging (Jackson et al. 
2014). Our understanding of coral communities is 
advancing through new approaches including in  situ 
and low altitude aerial photogrammetry (Burns et al. 

2015; Levy et  al. 2018), and aerial imagery (Asner 
et  al. 2020) that provide repeatable, unbiased, high-
resolution data at broader spatial extents than previ-
ously possible. Data acquisition from these emerging 
imaging capabilities are also being made possible 
from innovation in automated image analysis tools, 
such as CoralNet (Beijbom et al. 2015; Williams et al. 
2019).

Ecosystem

Studies of corals at the ecosystem level involve exam-
ining spatial variation and temporal trends across 
extents and/or grain sizes at or larger than individual 
coral communities (Fig.  1). These broad scale data 
can assess resiliency of a system to pulse events such 
a marine heatwaves and cyclones (Stuart-Smith et al. 
2018), as well as press disturbances like habitat deg-
radation from land-based pollution (Palandro et  al. 
2008). Ecosystem-scale data are particularly impor-
tant for understanding context, and for extrapolating 
finer resolution biotic responses discovered in ‘omic, 
holobiont, population, and community studies for 
understanding resiliency at management-relevant spa-
tial scales. Remotely sensed data sources (e.g., multi-
spectral and hyperspectral imagery, LiDAR, SONAR) 
have emerged as a key source of data for ecosystem-
level observations that include the ability to meas-
ure depth (Salameh et  al. 2019), habitat complexity 
(Lepczyk et al. 2021), environmental drivers like sea 
surface temperature and turbidity (El Mahrad et  al. 
2020), and more recently live coral cover at broad 
extents (Asner et  al. 2020). While live coral cover 
mapping is currently limited to aircraft-based imag-
ing spectrometers, forthcoming spaceborne spec-
trometers from NASA, the European Space Agency, 
and the private sector will make this capability glob-
ally accessible. Until then, space-based observation 
of broad benthic and geomorphic reef compositions 
from multispectral satellites will continue (Hedley 
et al. 2016; Li et al. 2020).

Resolution and extent of remotely sensed data are 
inversely correlated given the logistical costs of data 
collection, which limits the scope of what can be 
investigated for any individual mapping effort. Fur-
ther, gaps in the satellite record for different types of 
data can be troublesome especially for analyses over 
time. For example, sea temperature datasets only date 
back to the 1980s [e.g., the Coral Reef Temperature 
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Anomaly Database (CoRTAD) (Saha et  al. 2018)], 
which presents uncertainty in retrospective analy-
ses of heatwaves. Despite these challenges, uptake 
of remotely sensed data in coral research is rapidly 
growing as both spectral and radiometric resolu-
tion improves from both satellite and aerial sensors. 
Further, use of high quality, reliable ecosystem-level 
information for coral management is increasing as 
data becomes more available through efforts such as 
the Allen Coral Atlas (https://​allen​coral​atlas.​org) that 
are making information on coral reef habitat compo-
sition, bleaching, and other products available for the 
entire globe (Li et al. 2020, 2021).

Human and physical drivers of reefs across scales

Coral reefs are affected by multiple physical and 
anthropogenic drivers, such as pollution, overfish-
ing, and climate change (Jackson et  al. 2001; Fab-
ricius 2005; Hughes et al. 2017). These drivers often 
do not occur in isolation and can therefore result in 
additive, synergistic, or antagonistic responses across 
multiple scales (Côté et al. 2016). For example, vari-
able bleaching responses to increased temperature 
can occur within a single colony (Rowan et al. 1997), 
among colonies of the same species within a popu-
lation (Jones 2008; Williams et al. 2010; Ritson-Wil-
liams and Gates 2020), or across different species 
within a community (van Woesik et  al. 2011). At 
the ecosystem level, biophysical influences on ben-
thic cover can vary at the scale of islands (Williams 
et  al. 2015) and within small islands; for example, 
wave forcing and geomorphology can predict benthic 
regimes at the scale of 100  s of meters (Gove et  al. 
2015; Aston et al. 2019).

When examining how drivers interact and influ-
ence biological outcomes on coral reefs, the implica-
tion of scale must be considered (Turner et al. 2001). 
Yet, biological response and driver data are not nec-
essarily measured at the same scale. For example, 
there is often a disconnect between fine scale (spatial 
or temporal) temperature variation, measured with 
in  situ loggers (< 1  m/every 20  min), verses global 
satellite derived temperature (4  km/twice weekly) 
and global climate model outputs (100 km2/monthly) 
(Safaie et al. 2018). Human influences on coral reefs 
are also manifested at a variety of spatial and tem-
poral scales, and these multi-stressor relationships 

can be masked if studied at differing grain or extent 
sizes than those at which the processes occur. For 
example, Jouffray et  al. (2019) uncovered important 
biophysical and human influences on coral reefs in 
Hawai‘i, and did not detect any differences in their 
results after repeating analyses at multiple grain 
sizes. In particular, the study did not uncover effects 
of land-based pollution despite well understood con-
nections between pollution and reef condition (Fab-
ricius 2005), which was hypothesized to be a result 
of the grain size of the pollution data not matching 
the highly localized scale at which pollution affects 
reefs. Development and use of unmanned systems 
(Obura et al. 2019), sensor networks (Trevathan et al. 
2012), and low-cost cameras (Greene et al. 2020) are 
attempting to bridge the gap between observable bio-
logical responses and environmental driver data at 
scales relevant for improving our understanding of 
these complex systems.

One limitation to linking drivers and observa-
tions at appropriate scales is a lack of evidence for 
the scale at which the processes are occurring. For 
example, there is some evidence that scaling pat-
terns are common for coral communities in relation 
to biophysical gradients that may allow for a com-
mon scaling law for coral reef benthic communities 
on island seascapes (Gove et  al. 2015; Aston et  al. 
2019). However, the evidence for scaling in benthic 
reef communities comes from remote Pacific islands 
with relatively low human impacts, and relationships 
may break down when human influences disrupt nat-
ural processes. For example, Williams et  al. (2015) 
found that across the Pacific homogenized reefs with 
low diversity and a high abundance of ‘weedy’ spe-
cies common on populated islands were not coupled 
with background environmental regimes compared to 
strong biophysical coupling observed on unpopulated 
islands. Indeed, physical and human influences on 
coral reef systems can be evident in different contexts 
(Cinner et  al. 2018; Jouffray et  al. 2019); therefore, 
interactions among human and physical drivers need 
to be better understood in order to define boundaries 
for conservation and restoration. Difficulty uncover-
ing appropriate scales for inquiry is further com-
pounded by the potential for cross-scale phenomena, 
where processes could be occurring across and within 
scales (Peters et  al. 2007). Cross-scale redundancy 
has been shown to be an indicator of resilience, where 
better recovery after disturbance was observed for 

https://allencoralatlas.org
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reefs with herbivory operating across multiple scales 
(Nash et  al. 2016). Multiscale problems also may 
require potentially arbitrary delineations of discrete 
scales (Levin 1992), potentially masking the underly-
ing processes. Thus, future research needs to explic-
itly incorporate scale in order to understand how 
human and biophysical drivers interact to influence 
reef status and trends.

Linking observations across scales

Given the range of tools used to gain insight into reef 
resilience, and the scales of stressors on corals, it is 
critical to link our understanding of processes that 
allow for coral resilience across scales so that we 
may better predict how corals will respond to chang-
ing environmental conditions. For example, much of 
what we know about bleaching resistance of corals 
comes from molecular studies and manipulative tank 
experiments, both of which are logistically limited in 
size and breadth. But understanding how bleaching 
resistance is manifested in populations, communi-
ties, and ecosystems is fundamental to both informing 
future predictions and designing effective manage-
ment for corals.

For example, symbiont communities of corals 
are an important factor relating to many biologi-
cal and ecological outcomes on coral reefs (Baker 
et  al. 2008). Different genera of symbionts influ-
ence the thermal tolerance of the host coral, so the 

composition and relative abundance of symbiont taxa 
is particularly important for the long-term persistence 
of coral reef ecosystems (Berkelmans and Van Oppen 
2006; Logan et al. 2021). Various molecular biology 
techniques can resolve these patterns, but time, cost, 
and accessibility limit the availability of these data 
to relatively few well-studied ecosystems. Here, we 
provide an example of how the differential responses 
to heat stress by individual corals with different sym-
bionts can be predicted via remotely-sensed hyper-
spectral imagery. We show that symbiont community 
can be linked to hyperspectral imagery through color 
morphs in Montipora capitata, effectively transform-
ing the scale at which we examine symbiosis ecology 
from the within polyp-scale to the whole reef-scale 
(Fig. 3).

Previous molecular genetic studies of M. capi-
tata holobionts in Kāneʻohe Bay, Oʻahu, Hawai‘i, 
revealed two color morphs, brown and orange, which 
were associated with Cladocopium and Durusdinium 
symbionts, respectively. The color morph and sym-
biont were correlated with differential responses to 
a major bleaching event (Cunning et  al. 2016; Innis 
et  al. 2018), with orange, Durusdinium-dominated 
colonies showing much greater bleaching resistance. 
When combining this observation with high-fidelity 
imaging spectroscopy collected by aircraft through 
the Global Airborne Observatory (Asner et al. 2012), 
we were able to successfully distinguish between indi-
vidual corals of the two color morphs at a scale of an 
entire patch reef (Fig. 3). By connecting the biology 

Fig. 3   Spectral analysis of Montipora capitata color morphs 
in Kāneʻohe Bay.  A  Sampling points at Reef 44 where ben-
thic reflectance was retrieved from brown (n = 25) and orange 
(n = 25) color morphs. B  Illustrative region with neighbor-
ing orange and brown color morphs which were C defined as 
each color based on high resolution Global Airborne Observa-

tory imagery. D  The brightness normalized spectra of brown 
and orange color morphs show different reflectance at various 
wavelengths which can be used in discriminant analysis, E cor-
rectly classifying 64% of samples (Image credit: G. Asner and 
J. Heckler, Global Airborne Observatory). For details on meth-
ods see Supplemental Material
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of individual corals studied in situ using ‘Omics tech-
niques with remotely sensed data at broad scales, 
we link coral physiology at the scale of individuals 
and the scale of seascapes, showing that differential 
responses to stress at a physiological level can be 
predicted at a seascape scale. Thus, we provide an 
example of how cross-scale study could revolution-
ize our understanding and management of coral reefs 
given that these inferences can be scaled up to entire 
islands or archipelagos to provide actionable science 
on how the potential resilience of coral populations 
to climate-driven disturbances can vary spatially. 
For example, using remotely sensed data to identify 
thermotolerant individuals can be used for locating 
heat tolerant genotypes for use in restoration  (Drury 
et al. 2022). Further, transcriptomic and physiological 
measurements are being used around the world to rap-
idly identify thermally resilient coral colonies in situ 
(Cunning et al. 2021; Naugle et al. 2021; Savary et al. 
2021). Combining these data with 3D photogram-
metry or remotely sensed data over multiple years 
encompassing thermal disturbance events, when fine-
scale physiological or ‘omics sampling may not fea-
sible, could help in understanding the long-term fate 
of these thermally “tough” colonies over ecologically 
and management relevant spatial and temporal scales 
(Little et al. 2021).

In addition to emerging technologies transforming 
the way we study coral resilience, advances in how 
data from multiple scales can be brought together 
for new inferences is possible through the increas-
ing use of hierarchical modeling in ecology and 
conservation (Bolker et al. 2009; MacNeil and Con-
nolly 2015). Hierarchical models allow for explicitly 
incorporating hypotheses and data at multiple scales 
in an integrated form, due to the ability to formulate 
flexible nested model structures. Thus, finer scale 
patterns and processes can be understood in the con-
text of broader scale phenomena. For example, data 
collected at a fine scale on the response of a coral to 
disturbance may be combined with predictors that 
correspond to multiple hierarchical scales and can be 
incorporated at the scale at which the relationship to 
the coral’s response is hypothesized. MacNeil et  al. 
(2009) illustrate how this statistical framework can 
be used to uncover how fish abundance and habitat 
diversity vary in relation to site-, reef-, and atoll-
scale processes using hierarchical models that consid-
ered data at each scale. Since this publication, and a 

subsequent call for this to become a major research 
avenue for reef research (Hixon 2011), these methods 
have yet to be adopted by coral reef scientists glob-
ally. Therefore, the use of hierarchical models in link-
ing fine- and broad-scale ecosystem processes holds 
great promise for furthering our understanding of reef 
resilience (MacNeil et  al. 2015; Cinner et  al. 2016; 
Donovan et al. 2020).

One path forward for coral reef resilience studies is 
to use emerging technologies and quantitative frame-
works to translate how the physiological and behavio-
ral responses of individuals scale to the seascape, and 
ultimately to the benefits and services reefs provide 
to people. We demonstrate that this is possible via 
data collected across scales in Kāneʻohe Bay, Oʻahu, 
Hawaiʻi, USA, but that is just the beginning.

Applications for effectively managing 
and conserving reefs

Given that the resilience of coral reefs is manifested 
across multiple scales of biological organization, and 
that feedbacks can exist among those scales, it is criti-
cal to link ideas and insights from the cellular-to-pol-
yps-to-ecosystem-levels in order to effectively man-
age and conserve coral reefs in the face of local and 
global change.

Matches and mismatches exist between the scale at 
which we measure coral reef resilience (Fig. 4A), and 
the scales at which resilience is manifested, thereby 
posing serious challenges to coral reef conservation 
and management. These challenges exist because the 
varying spatial and temporal scales at which human 
impacts affect coral reefs (Fig.  4B) are often mis-
aligned with the scales of management policy and 
action (Fig.  4C) (Cumming et  al. 2006; Bellwood 
et  al. 2019). To address the challenges from this 
scale-dependent mismatch, resilience-based manage-
ment has emerged (Mcleod et  al. 2019), including 
broad strategies that are adaptive and flexible and 
employ both interventionist and restoration-based 
tactics. Importantly, resilience-based management 
acknowledges upfront that systems are scale-depend-
ent, and an understanding of scale needs to be incor-
porated into solutions (Mcleod et al. 2019).

Despite the emergence of resilience-based man-
agement strategies, global climate change only exac-
erbates the scale-dependent mismatches between 
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coral reef resilience management and human impacts. 
Coral reef management is most often local in scale 
and limited to jurisdictions in which reefs occur; thus, 
addressing global scale stressors is often beyond the 
purview of those that are most affected. One path 
forward includes regional international partnerships 
between countries that share coral reef habitats, pro-
viding a platform for federal governments and con-
servation agencies to work together to meet coral reef 
resilience goals. The MAR Fund (https://​marfu​nd.​
org/) is an example of such a partnership that provides 
support for the countries bordering the Mesoamerican 
Barrier Reef in the Caribbean: Mexico, Belize, Gua-
temala and Honduras. Potential improvements in reef 
futures are possible by building off of these local and 
regional initiatives to bolster reef resilience alongside 
concerted efforts to curb global climate change. There 
is growing evidence that mitigating local stressors 
such as fishing and pollution can increase the poten-
tial for corals to withstand climate effects (Gilmour 
et  al. 2013; Claar et  al. 2020; Donovan et  al. 2020, 
2021). For example, nutrient pollution and overfish-
ing of herbivores can both lead to increases in mac-
roalgae, which causes greater mortality of corals fol-
lowing heatwaves (Donovan et al. 2021).

Coral restoration and human interventions pro-
vide another path forward for reef futures (Bay et al. 
2019; National Academies of Sciences, Engineering, 
and Medicine 2019b). There have been advancements 
in managed selection (Van Oppen et  al. 2015), such 
as propagating or translocating heat tolerant corals 
(Barott et al. 2021; Drury and Lirman 2021), assisted 
symbiont shuffling (e.g., promoting symbiosis with 
heat tolerant symbionts) (Buerger et al. 2020), genetic 

manipulation (Cleves et al. 2020), and altering coral 
microbiomes (e.g., treating corals with probiotics) 
(Rosado et  al. 2019). Applications of these methods 
are being adopted by coral restoration projects, which 
often focus on rearing fragments of corals in nurser-
ies and out-planting to select reef sites to encourage 
population-level recovery. However, the ability of 
these methods to scale to ecosystem level restoration 
is unclear (Boström-Einarsson et al. 2020; Hein et al. 
2020) and more work is needed to integrate out-plant-
ing with existing ecological and physical bounds of 
the system (Ladd et  al. 2019). Examples using syn-
optic-scale observations to enhance coral restoration 
projects includes linking coral outplanting successes 
and failures to remotely sensed drivers on a global 
scale (Foo and Asner 2021), and using live coral and 
algal mapping for restoration site selection (Schill 
et al. 2021).

A path forward

Due to the wide variety of local and regional stress-
ors to coral reefs, and the mismatch that often 
occurs between these impacts and management 
efforts, we propose that future coral reef science 
activities consider the multi-scale dynamics of 
coral reef systems, and embrace emerging technolo-
gies and methods to address reef science for con-
servation and management. One way to approach 
this challenge may be to (i) aggregate mechanistic 
biological principles from finer scales (e.g., intra-
holobiont organismic or chemical interactions) 
into (ii) species-level performance principles and 

Fig. 4   Matches and mismatches between the scales of measurement (A), human impacts (B) and management (C) for coral reef 
resilience

https://marfund.org/
https://marfund.org/
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models at coral population levels, and then to (iii) 
integrate those populations at community levels 
through competitive models for space, and then (iv) 
use the emerging high-resolution remote sensing 
to constrain the patterns of changing communities 
in space and time. While most of these individual 
undertakings are currently limited to research 
and development that precludes full utilization 
of an interlinked approach, setting an agenda now 
for achieving these linkages is fundamental to the 
longer-term goals and milestones required to scale 
up coral biology to the ecosystem level at which 
management interventions are sought.

There have been substantial advances in how we 
study coral resilience and what has been learned 
at both the finest grains (i.e., molecular and phys-
iology) and at the broadest (i.e., remote sens-
ing). Thus, the future of coral reef science lies at 
the intersection. Here, we have provided one such 
example of how within-individual bleaching resist-
ance was transformed to a seascape scale (Fig.  3). 
Integration across scales of coral biology and ecol-
ogy is the future of reef science, and in order for 
this to be possible, ideas and data must flow across 
and within disciplines making new and bigger dis-
coveries possible.
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