10,085 research outputs found

    Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass

    Get PDF
    The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates (similar to 10 K/s), has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical and critical propagation of cracks in these structures. In the present study, bulk plates of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, machined into 7 mm wide, 38 mm thick compact-tension specimens and fatigue precracked following standard procedures, revealed fracture toughnesses in the fully amorphous structure of K(lc)similar to 55 MPa root m, i.e., comparable with that of a high-strength steel or aluminum ahoy. However, partial and full crystallization, e.g., following thermal exposure at 633 K or more, was found to result in a drastic reduction in fracture toughness to similar to 1 MPa root m, i.e., comparable with silica glass. The fully amorphous alloy was also found to be susceptible to fatigue-crack growth under cyclic loading, with growth-rate properties comparable to that of ductile crystalline metallic alloys, such as high-strength steels or aluminum alloys; no such fatigue was seen in the partially or fully crystallized alloys which behaved like very brittle ceramics. Possible micromechanical mechanisms for such behavior are discussed

    Data compilation and evaluation of space shielding problems. Radiation hazards in space, volume III

    Get PDF
    Radiation hazards of interplanetary space and related shielding problem

    Computer programs for shielding problems in manned space vehicles

    Get PDF
    Computer programs for shielding problems in manned space vehicles - proton penetration code

    Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors

    Get PDF
    Objective To estimate the percentage reduction in incidence of dementia that would be obtained if specific risk factors were eliminated

    Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

    Get PDF
    The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 ÎŒm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems

    Molecular electronics exploiting sharp structure in the electrode density-of-states. Negative differential resistance and Resonant Tunneling in a poled molecular layer on Al/LiF electrodes

    Full text link
    Density-functional calculations are used to clarify the role of an ultrathin LiF layer on Al electrodes used in molecular electronics. The LiF layer creates a sharp density of states (DOS), as in a scanning-tunneling microscope (STM) tip. The sharp DOS, coupled with the DOS of the molecule leads to negative differential resistance (NDR). Electron transfer between oriented molecules occurs via resonant tunneling. The I-V characteristic for a thin-film of tris (8-hydroxyquinoline)- aluminum (AlQ) molecules, oriented using electric-field poling, and sandwiched between two Al/LiF electrodes is in excellent agreement with theory. This molecular device presents a new paradigm for a convenient, robust, inexpensive alternative to STM or mechanical break-junction structures.Comment: 5 pages, 3 figure

    Risk management strategies using seasonal climate forecasting in irrigated cotton production: a tale of stochastic dominance

    Get PDF
    Decision‐making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream‐flows in north‐eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.Crop Production/Industries, Risk and Uncertainty,

    Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites

    Get PDF
    Nonlinear-elastic fracture mechanics methods are used to assess the fracture toughness of bulk metallic glass (BMG) composites; results are compared with similar measurements for other monolithic and composite BMG alloys. Mechanistically, plastic shielding gives rise to characteristic resistance-curve behavior where the fracture resistance increases with crack extension. Specifically, confinement of damage by second-phase dendrites is shown to result in enhancement of the toughness by nearly an order of magnitude relative to unreinforced glass

    Diagnostic Tests for Alzheimer's Disease: Rationale, Methodology, and Challenges

    Get PDF
    There has been a large increase in the amount of research seeking to define or diagnose Alzheimer's disease before patients develop dementia. If successful, this would principally have clinical benefits both in terms of treatment as well as risk modification. Moreover, a better method for diagnosing predementia disease would assist research which seeks to develop such treatments and risk modification strategies. The evidence-based definition of a diagnostic test's accuracy is fundamental to achieve the above goals and to address this, the Cochrane Collaboration has established a Diagnostic Test Accuracy group dedicated to examining the utility and accuracy of proposed tests in dementia and cognitive impairment. We present here the assumptions and observations underpinning the chosen methodology as well as the initial methodological approach decided upon
    • 

    corecore