(13) https://ntrs.nasa.gov/search.jsp?R=19650021233 2020-03-17T01:51:10+00:00Z


NASA CONTRACT NO. NAS 8-5180
(THRU)

## LIDRARY GOPY

"

# COMPUTER PROGRAMS FOR SHIELDING PROBLEMS IN MANNED SPACE VEHICLES 

Prepared By:
C. W. Hill
C. C. Douglass, Jr.
W. B. Ritchie
K. M. Simpson, Jr.

Prepared For:
George C. Marshall Space Flight Center National Aeronautics and Space Administration

Huntsville, Alabama

NASA Contract NAS 8-5180

If this document is supplied under the requirements of a United States Government contract, the following legend shall apply unless the letter $U$ appears in the coding box:

This data is furnished under a United States Government contract and only those portions hereof which are marked (for example, by circling, underscoring or otherwise) and indicated as being subject to this legend shall not be released outside the Government (except to foreign governments, subject to these same limitations), nor be disclosed, used, or duplicated, for procurement or manufacturing purposes, except as otherwise authorized by contract, without the permission of Lockheed-Georgia Company, A Division of Lockheed Aircraft Corporation, Marietta, Georgia. This legend shall be marked on any reproduction hereon in whole or in part.

The "otherwise marking" and "indicated portions" as used above shall mean this statement and includes all details or manufacture contained herein respectively.

## FOREWORD

This report is submitted to the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, in accordance with the requirements of Contract NAS8-5180.

This report describes the results of an effort to extend and refine certain space radiation shielding codes and to provide detailed code descriptions and operating instructions so that the codes may be used at other installations. In particular, the approximations in the proton penetration code have been examined and improved where possible. Changes include a better attenuation kernel for evaporation neutrons, parabolic rather than linear interpolation in tables, arbitrary angle of incidence for monodirectional proton beams, removal of the assumption of constant cross section within a layer, and inclusion of a source term calculation for secondary gamma rays.

Three new codes were written during the present effort. Program LIGHT computes gamma ray cascades from excited nuclei. Program MSGAM computes gamma ray dose due to the distributed sources developed in the proton penetration code. Program LRSPC computes improved proton range and stopping power data for use in the proton penetration code.

The production of cascade gamma rays arising from inelastic nucleon collisions with shield nuclei was examined because of conflicting results of other investigators. Madey et al. found that the gamma ray component overshadows the primary proton component in certain cases of interest. Alsmiller et al., using
a different approach, estimated a gamma ray component which was smaller primary proton component in certain cases of interest. Alsmiller et al., using
a different approach, estimated a gamma ray component which was smaller by a factor of ten. Results presented herein, based on a third approach, tend to agree with those of Alsmiller et al. A discussion of the discrepancies and their possible origin is given.

## TABLE OF CONTENTS

Page
FOREWORD ..... i
SUMMARY ..... iii
TABLE OF CONTENTS ..... v
LIST OF FIGURES ..... vii

1. GAMMA RAY PRODUCTION IN PROTON SHIE LDS ..... 1
2. PARAMETRIC STUDY OF PROTON PENETRATION CODE ..... 15
3. PROTON PENETRATION CODE (LPPC) ..... 19
4. INELASTIC GAMMA PRODUCTION CODE (LIGHT) ..... 45
5. MULTI-SLAB GAMMA CODE (MSGAM) ..... 57
6. NUCLEAR CONSTANTS CODE (NCON) ..... 67
7. RANGE AND STOPPING POWER CALCULATOR (LRSPC) ..... 77
8. SOURCE SPECTRUM CODE (LSSC) ..... 93
9. ELECTRON BREMSSTRAHLUNG CODE (LEBC) ..... 101
10. MISSION FLUX CODE (LMFC) ..... 113
APPENDIX A
Proton Range and Stopping Power Data ..... 121
REFERENCES ..... 131

## LIST OF FIGURES

Figure Page1 Excitation and De-excitation Scheme for BombardedNucleus2 Comparison of Gamma and Primary Proton Tissue DoseRates at Center of Spherical Aluminum Shield fromIsotropic Solar Flare Protons
Comparison of Gamma and Primary Proton Tissue Dosesat Center of Spherical Aluminum Shield from IsotropicSolar Flare Protons
1 Excitation and De-excitation Scheme for Bombarded Nucleus
2 Comparison of Gamma and Primary Proton Tissue Dose Rates at Center of Spherical Aluminum Shield from Isotropic Solar Flare Protons
3 Comparison of Gamma and Primary Proton Tissue Doses at Center of Spherical Aluminum Shield from Isotropic Solar Flare Protons7
4 Dose Per Flare ..... 8
56$7 \quad$ Dose Rate Per Unit Flux Above 40 Mev11
8 Dose Per Flare ..... 12
9Data Input Format - Library Routine33
12 Data Input Format - Execute Routine ..... 35
13 Excitation and De-excitation Scheme for Bombarded Nucleus ..... 51
14 Continuum Gamma Ray Intensity at Several Energies Versus Proton Bombarding Energy ..... 52
15K as Function of Material (Z)70

## LIST OF FIGURES (Continued)

Figure ..... Page$16 \quad \mathrm{C}$ Vs K Required to Give $\mathrm{E} / \mathrm{E}_{\mathrm{B}}=0.22$ and 0.17 for$\mathrm{E}_{\mathrm{B}}=460 \mathrm{Mev}$71
17 Nuclear Transparencies for Proton Bombardments Vs Material (Z) ..... 72
18 Energy Dependence of Secondary Protons ( $E_{p}$ ) and Neutrons ( $E_{n}$ ) upon Bombarding Energy ( $E_{B}$ ) for Materials (Z)73
19 Energy Ratio of Cascade Neutrons ( $\mathrm{E}_{\mathrm{n}}$ ) to Cascade Protons ( $\mathrm{E}_{\mathrm{p}}$ ) as Function of Material ( Z ) ..... 74

## 1. GAMMA RAY PRODUCTION IN PROTON SHIELDS

The question of secondary production in proton shields has been investigated during the past several years in order to assess its importance for space radiation shielding. Secondary component calculational methods have been developed for cascade protons, cascade neutrons, and evaporation neutrons. Estimates have shown that meson production in shields up to 100 grams per square centimeter is insignificant. However, estimates of gamma ray production and transport indicate that this component may be as important as other secondary components and should, therefore, be considered in dose calculations.

Experimental data concerning gamma ray production due to nucleon bombardment is scant and incomplete. A calculational method based on direct experimental results would, of necessity, incorporate several gross assumptions. The two limiting features of such a method would be the assumption of gamma ray spectrum and yield with bombarding energy and the difficulty of extending the calculation to materials for which no experimental data exists.

In view of the difficulties connected with the utilization of present experimental data on gamma ray production, a model has been constructed which will predict gamma ray yield from basic nuclear data, much of which is available in the literature or may be calculated. The data obtained from the model should yield space radiation shielding results as reliable as those obtained from the present experimental data. In addition, this approach permits investigation of a wide variety of shielding materials.

The calculation of gamma ray yield is based on the statistical model of the nucleus. Consider a nucleus composed of A nucleons. Nuclide A is normally in the ground state, but may be excited to a higher state by an inelastic collision with a high energy nucleon. The distribution of excited states is taken from the Nuclear Data Sheets ${ }^{35}$ for low-lying levels, and is calculated from Bethe's equation using Varshni's fit ${ }^{45}$ for higher levels. The probability of exciting a particular level is based upon statistical considerations.

The excited nucleus may decay in several ways. It may emit a gamma ray and go to a lower level. A series of such transitions is termed a gamma ray cascade and is pictured in Figure 1. The dashed vertical arrow represents


FIGURE 1 EXCITATION AND DE-EXCITATION SCHEME FOR BOMBARDED NUCLEUS
excitation and the solid vertical arrows represent a particular cascade mode. At each step in this process, gamma ray emission competes, usually weakly, with particle evaporation until the excitation energy is lower than the threshold for particle emission. The total gamma ray production in nuclide A is computed according to a method outlined by Troubetzkoy. 44 Further details are given in Section 4, the description of computer program LIGHT which traces the cascade.

Program LIGHT ignores gamma rays which may be emitted following direct knock-on processes and particle evaporation as illustrated in the formation of nuclide A-1 in Figure 1. These gamma rays are estimated in the following way. It is assumed that no gamma rays are emitted until a sequence of evaporations leaves the residual nucleus in a state just above the threshold for particle emission. From this point, the residual nucleus, $\mathrm{A}-\mathrm{N}$ where N is the number of particles which have left, is assumed to emit gamma rays similar to those of the parent nucleus, A, which is also several Mev above particle emission threshold. The overestimate arising from the fact that the last evaporation is not permitted to take the nucleus to the ground state is partially compensated for by permitting a fraction of the residual nuclei to evaporate a final particle, giving rise to no gamma rays at all.

In the case of nucleon capture, also shown in Figure 1, the nucleus A + 1 is assumed to decay similarly to nucleus A.

The proton penetration code, LPPC, uses spectral yield data developed by LIGHT to calculate and sum gamma ray production as a function of incident particle energy and the type of target nucleus. Interactions produced by primary protons, cascade protons, and cascade neutrons are taken into account. The resulting gamma ray sources are output on punched cards in the form of energy and depth distributions.

Gamma ray dose is computed by program MSGAM using source data from the proton penetration code. A calculation is performed for each of ten gamma ray energies for which isotropic sources are distributed throughout the shield. Moments method buildup factors ${ }^{12,19}$ are used for the gamma ray transmission calculations.

Several calculations have been performed for three shield materials; carbon, aluminum, and iron. The results for carbon should be regarded as tentative; since many aspects of the statistical model are violated by light nuclei.

Figure 2 shows a comparison of the present results with those of Madey, et al., ${ }^{30}$ and of Alsmiller, et al. ${ }^{7}$ Madey based his gamma ray yield data upon experimental data for protons in aluminum at 14 Mev . He assumed that gamma ray production was constant for bombarding energies up to 50 Mev and zero thereafter. Gamma rays arising from secondary protons and neutrons were ignored. The Alsmiller results are based upon a theoretical model which yields gamma production cross sections for inelastic ( $n, n^{\prime}$ ) reactions. The neutron cross sections are assumed to apply to proton reactions after an adjustment is made for the coulomb barrier. Two upper cut-off energies are shown, 22.3 Mev and 50 Mev , yielding a factor of two or three difference. All gamma rays are assumed to be emitted straight ahead in the Alsmiller calculation so that contributions arise from protons entering along the shield normal only. Gamma rays arising from secondary protons and neutrons are ignored.

The data presented in Figure 2 show that the Lockheed results agree with the Alsmiller, et al., calculations for shield thicknesses greater than 20 grams per square centimeter. Above 70 grams per square centimeter, the Lockheed curve changes slope, reflecting the contributions due to cascade nucleons. It is significant that the dose at the larger thicknesses of aluminum is primarily due to gamma rays generated by low energy protons in the first centimeter of shielding. This fact indicates that proton experiments below 50 Mev would be of great value in confirming secondary gamma ray dose calculations for the relatively soft proton spectrum of most flares.

At small shield thicknesses, the Lockheed results are appreciably higher than those of Alsmiller, et al. A portion of the discrepancy may be due to the gamma ray transport calculation. Alsmiller, et al., used the straightahead approximation which assumes that only those protons entering the shield along the normal contribute to the dose at the center of the spherical shell shield. A second possibility is that the low energy gamma ray yields may be larger in the Lockheed calculation, leading to a higher dose estimate near the entry face of the shield. A third possible explanation of the discrepancy may be in the choice of thickness mesh size near the entry face. In the Lockheed calculation, a mesh size of 0.1 was required in the first 0.5 grams per square centimeter of aluminum to yield an accurate dose estimate. The mesh size would be less important if the low energy portion of the gamma ray spectrum were small or if a hard proton spectrum were analyzed.

Both the Alsmiller results and the Lockheed results are generally much lower than the dose estimates of Madey, et al. The difference is thought to


FIGURE 2 COMPARISON OF GAMMA AND PRIMARY PROTON TISSUE DOSE RATES AT CENTER OF SPHERICAL ALUMINUM SHIE LD FROM ISOTROPIC SOLAR FLARE PROTONS
be due to two factors. First, Madey et al. assumed the gamma ray yield per unit proton flux is constant from the Coulomb barrier energy to 50 Mev . This procedure probably overestimates the gamma ray yield for protons whose energy is between 4 and 12 Mev . Second, the Lockheed gamma ray spectrum has less low energy photons than the 14 Mev proton data indicate. 46 If this difference is the same at other bombarding energies, the Lockheed dose results may be low by a factor of two.

Figure 3 shows a second comparison with the results of Alsmiller et al. In this case the disagreement is only a factor of two at small thicknesses, perhaps due to the use of a harder spectrum.

The importance of gamma ray secondaries compared to other dose components may be seen in Figures 4 through 9. Doses are plotted for carbon, aluminum, and iron shields for the Freden-White spectrum and for an imaginary envelope solar flare. ${ }^{51}$


FIGURE 3 COMPARISON OF GAMMA AND PRIMARY PROTON TISSUE DOSES AT CENTER OF SPHERICAL ALUMINUM SHIELD FROM ISOTROPIC SOLAR FLARE PROTONS


FIGURE 4 DOSE PER FLARE


FIGURE 5 DOSE RATE PER UNIT FLUX ABOVE 40 MEV


FIGURE 6 DOSE PER FLARE


FIGURE 7 DOSE RATE PER UNIT FLUX ABOVE 40 MEV


FIGURE 8 DOSE PER FLARE

figure 9 dose rate per unit flux above 40 mev


FIGURE 10 TOTAL DOSE VERSUS SPECTRUM SHAPE - ALUMINUM SHIELD

## 2. PARAMETRIC STUDY OF PROTON PENETRATION CODE

The dose rate, $\mathrm{D}(\mathrm{TOT})$, calculated by LPPC is extremely sensitive to the incident proton spectrum shape. This is indicated by the data displayed in Figure 10; the dose rate is plotted versus $B$, the parameter in the power law spectrum $A E^{-B}$, for four shield thicknesses. The coefficient $A$ is determined such that

that is, the integral flux is constant over the range of $B$. The shield material used for this presentation is aluminum, and the receiver is water.

To determine the effect of the energy table mesh size on the LPPC calculations, an extensive program of varying the step size within each energy group and varying the sizes of the four energy groups in the table was performed. Fine mesh steps for the low energies in the table and coarse mesh steps for the high energies were found to be most suitable. A satisfactory arrangement is 1 Mev steps from the minimum energy to 20 Mev , 2 Mev steps from 20 Mev to $50 \mathrm{Mev}, 10 \mathrm{Mev}$ steps from 50 Mev to 300 Mev , and 50 Mev steps from 300 Mev to the maximum energy. This arrangement provides a relatively short energy table, which results in shorter times on the computer. A finer mesh does not improve the LPPC calculations to an appreciable degree.

The effect of the step size used in stepping through the shield material is indicated in Tables A and B. The incident proton spectrum is the "imaginary flare enevelope" with isotropic distribution; ${ }^{51}$ the isotropicincidence is used because the calculations are most sensitive to step size in this mode. The maximum percent difference in the total dose rate is less than 1.2 percent, and the maximum percent different in the total proton number flux is less than 1.1 percent. Hence, the LPPC calculations are not very sensitive to step sizes between 1 and $10 \mathrm{gm} / \mathrm{cm}^{2}$ in thickness.

Table C indicates the effect on the total dose rate, of step size through an extremely thick cesium shield. It is to be noted that the percent difference remains less than $10 \%$ for shields up to $300 \mathrm{gms} / \mathrm{cm}^{2}$ in thickness. Apparently, large step sizes tend to underestimate the dose rate for shields


FIGURE 10 TOTAL DOSE VERSUS SPECTRUM SHAPE - ALUMINUM SHIELD
less than $30 \mathrm{gm} / \mathrm{cm}^{2}$ thick and overestimate the dose rate for shields greater than $30 \mathrm{gm} / \mathrm{cm}^{2}$ thick.

TABLE A
TOTAL DOSE RATE - ALUMINUM

| X | $\Delta \mathrm{X}$ | $1.0 \mathrm{gm} / \mathrm{cm}^{2}$ | $2.0 \mathrm{gm} / \mathrm{cm}^{2}$ | $5.0 \mathrm{gm} / \mathrm{cm}^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| $0.0 \mathrm{gm} / \mathrm{cm}^{2}$ | $3.30 \times 10^{4}$ | $3.30 \times 10^{4}$ | $3.30 \times 10^{4}$ | $3.30 \times 10^{4}$ |
| 0.5 | $1.20 \times 10^{4}$ | $1.20 \times 10^{4}$ | $1.20 \times 10^{4}$ | $1.20 \times 10^{4}$ |
| 2.0 | $1.20 \times 10^{3}$ | $1.20 \times 10^{3}$ | $1.20 \times 10^{3}$ | $1.20 \times 10^{3}$ |
| 4.0 | $3.95 \times 10^{2}$ | $3.91 \times 10^{2}$ | $3.91 \times 10^{2}$ | $3.91 \times 10^{2}$ |
| 10.0 | $9.38 \times 10^{1}$ | $9.30 \times 10^{1}$ | $9.29 \times 10^{1}$ | $9.27 \times 10^{1}$ |
| 20.0 | $3.44 \times 10^{1}$ | $3.43 \times 10^{1}$ | $3.43 \times 10^{1}$ | $3.42 \times 10^{1}$ |
| 30.0 | $1.97 \times 10^{1}$ | $1.97 \times 10^{1}$ | $1.98 \times 10^{1}$ | $1.98 \times 10^{1}$ |

TABLE B
TOTAL PROTON NUMBER FLUX - ALUMINUM

| X | $\Delta \mathrm{X}$ | $1.0 \mathrm{gm} / \mathrm{cm}^{2}$ | $2.0 \mathrm{gm} / \mathrm{cm}^{2}$ | $5.0 \mathrm{gm} / \mathrm{cm}^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| $0.0 \mathrm{gm} / \mathrm{cm}^{2}$ | $1.58 \times 10^{7}$ | $1.58 \times 10^{7}$ | $1.58 \times 10^{7}$ | $1.58 \times 10^{7}$ |
| 0.5 | $4.26 \times 10^{6}$ | $4.26 \times 10^{6}$ | $4.26 \times 10^{6}$ | $4.26 \times 10^{6}$ |
| 2.0 | $8.12 \times 10^{5}$ | $8.09 \times 10^{5}$ | $8.09 \times 10^{5}$ | $8.09 \times 10^{5}$ |
| 4.0 | $3.55 \times 10^{5}$ | $3.51 \times 10^{5}$ | $3.51 \times 10^{5}$ | $3.51 \times 10^{5}$ |
| 10.0 | $1.14 \times 10^{5}$ | $1.13 \times 10^{5}$ | $1.13 \times 10^{5}$ | $1.13 \times 10^{5}$ |
| 20.0 | $4.68 \times 10^{4}$ | $4.63 \times 10^{4}$ | $4.63 \times 10^{4}$ | $4.63 \times 10^{4}$ |
| 30.0 | $2.68 \times 10^{4}$ | $2.66 \times 10^{4}$ | $2.66 \times 10^{4}$ | $2.67 \times 10^{4}$ |

TABLE C
TOTAL DOSE RATE - CESIUM

| X | $\Delta \mathrm{X}$ | $5.0 \mathrm{gm} / \mathrm{cm}^{2}$ | $20.0 \mathrm{gm} / \mathrm{cm}^{2}$ |
| :---: | :---: | :---: | :---: |
| $20.0 \mathrm{gm} / \mathrm{cm}^{2}$ | 54.0 | 53.3 | \% Difference |
| 40.0 | 16.8 | 16.8 | -1.3 |
| 60.0 | 8.57 | 8.64 | 0.0 |
| 80.0 | 5.36 | 5.40 | 0.82 |
| 100.0 | 3.75 | 3.86 | 1.9 |
| 200.0 | 1.19 | 1.27 | 2.9 |
| 300.0 | 0.56 | 0.61 | 6.7 |

## 3. PROTON PENETRATION CODE (LPPC)

## CODE DESCRIPTION

The Lockheed Proton Penetration Code (LPPC) is an IBM-7094 program which calculates primary and secondary doses behind multistrata slab shields due to an incident proton flux. A number of options are available to treat diverse proton angular and energy distributions and to provide several types of output data. Early versions of this code have been reported in several previous reports. ${ }^{5,6,38}$

## Incident Flux

The incident proton flux may be monodirectional or isotropic. The monodirectional flux option treats protons impinging on a slab shield at an arbitrary angle. The isotropic flux option considers isotropic protons incident on a slab shield and applies a transformation to convert to a spherical shell shield. The slab doses are available as intermediate output, if desired.

The energy spectrum of the initial protons is specified as the number flux, differential in energy, or as monoenergetic. Spectrum option 1 computes the spectrum from the power law given in Equation 3-1.

$$
\begin{equation*}
\Phi(\mathrm{E})=\mathrm{A} \cdot \mathrm{E}^{-\mathrm{B}} \tag{3-1}
\end{equation*}
$$

A and B are input constants and E is the energy in Mev. Spectrum option 2 computes the spectrum from an exponential form given in Equation 3-2.

$$
\begin{equation*}
\Phi(E)=A \cdot \operatorname{Exp}(-E / B) \tag{3-2}
\end{equation*}
$$

Low and high energy cutoffs may be applied to spectrum options 1 and 2. Spectrum option 3 causes the code to read a table of the number flux, differential in energy, versus energy. A parabolic interpolation routine automatically computes the flux at the energy mesh points used in the calculation. Spectrum option 4 treats a monoenergetic proton flux.

## Shield Composition

The shield is composed of one to ten homogeneous strata. A stratum may contain a single element, compound, or mixture. Each stratum may be subdivided into a number of layers. The layer size defines the thickness mesh used in solving the transport equations. The total number of layers in a shield may be as large as one hundred.

The nuclear and atomic parameters required for each material are stored on a library tape. At present, the library contains data for the nine elements and five compounds listed in Table D.

TABLE D
MATERIALS CONTAINED IN THE LPPC LIBRARY

| Number | Material |
| :---: | :--- |
| 1 | Hydrogen |
| 4 | Beryllium |
| 6 | Carbon |
| 7 | Nitrogen |
| 8 | Oxygen |
| 13 | Aluminum |
| 26 | Iron |
| 55 | Cesium |
| 74 | Tungsten |
| 201 | Water |
| 202 | Hydrogen Peroxide |
| 203 | Polyethylene |
| 204 | Hydrazine |
| 221 | Tissue |

## Dose Components

Dose components are computed for zero shield thickness and after each layer. These doses include primary proton dose, cascade proton dose, cascade neutron dose, and evaporation neutron dose. In addition, gamma
ray source terms as a function of energy and depth may be calculated and output on punched cards. These data may be used in conjunction with program MSGAM (Section 5.) to obtain gamma ray dose as a function of shield thickness.

## Radiation Transport

The computational model applies to a beam of protons incident on a slab shield. Isotropic flux is approximated by taking eleven beams at equal intervals in the cosine of the incident angle and performing a numerical integration over solid angle. The calculation proceeds by treating in sequence the penetration of radiation through successive shielding layers, each of which is of thickness substantially smaller than the mean free path for nuclear collisions. Given the absolute energy spectrum of nucleons incident on the first layer, the spectra of emerging nucleons are calculated on the basis of the ionization energy losses and nuclear collisions within the layer. These spectra are then taken to represent the spectra of protons and neutrons incident on the second layer, and the calculations are repeated until the desired range of shield thicknesses has been covered.

Inelastic nuclear collisions within a layer remove nucleons from the beam but may produce secondary nucleons which must be considered. These collisions are treated in accordance with the direct interaction model first proposed by Serber. ${ }^{39}$ The nuclear reaction proceeds in two stages. In the first stage, the bombarding nucleon makes collisions with individual nucleons; and these in turn have further collisions within the nucleus, thus generating a cascade of nucleons. Since the energies of the bombarding particle and the first few nucleons involved in the cascade are large compared to the binding energy of a nucleon, this stage of the reaction may be considered to consist of collisions between free nucleons. The Pauli exclusion principle should be taken into account in that collisions that would lead to nucleons in otherwise occupied states are forbidden. Energies of the first few particles involved in the cascade are typically large enough so that these emerge from the nucleus. After a few collisions, however, the energies of the remaining nucleons involved in the cascade are reduced below that necessary for escape. At the end of the cascade stage, a residual nucleus remains, usually in a highly excited state. Further particle emission can then follow by the comparatively slower second stage of the reaction, the evaporation process.

The generation of secondary nucleons within the shield presents a complex shielding problem because of the energy and angular distribution of these particles. An approximate computational method has been devised on the
basis of the simplifying assumtpion that the high energy neutrons and protons resulting from the initial stage of the nuclear reaction are emitted in the direction of the incident nucleon giving rise to the reaction. An energy distribution of these straight-ahead nucleons is derived from the Metropolis data. 31,32 The more nearly isotropic evaporation nucleons are treated in a separate calculation.

The spectrum of primary and cascade nucleons is calculated after each layer by evaluating the solution to a pair of coupled, integro-differential equations, represented by Equations 3-3 and 3-4.

$$
\begin{gather*}
\frac{\partial \Phi_{P}(E, X)}{\partial X}+\Sigma_{P}(X) \cdot \Phi_{P}(E, X)= \\
\frac{\partial\left[\Phi_{P}(E, X) \cdot S(E)\right]}{\partial}+\Phi_{P P}(E, X)+\Phi_{N P}(E, X) \tag{3-3}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial \Phi_{N}(E, X)}{\partial X}+\sum_{N}(E) \cdot \Phi_{N}(E, X)=\Phi_{P N}(E, X)+\Phi_{N N}(E, X) \tag{3-4}
\end{equation*}
$$

$\Phi_{\mathrm{P}}(\mathrm{E}, \mathrm{X})=$ primary plus secondary proton differential energy flux. The code actually treats each component separately.
$\Phi_{N}(E, N)=$ cascade neutron flux.
$\mathrm{E}=\mathrm{energy}$.
$X=$ position in shield.
$\sum_{P}(E) \sum_{N}(E)=$ inelastic cross section for protons (neutrons).
$S(E)=\frac{d E}{d X}$, proton stopping power.
$\Phi_{A B}(E, X)=$ cascade production term, or particles of type B produced by particles of type $A$ in the shield layer.

Solutions to Equations 3-3 and 3-4 are given by Equations 3-5 and 3-6.

$$
\begin{align*}
\Phi_{P}(E, X+\Delta X)=\Phi_{P}\left(E^{\prime}, X\right) & \frac{S\left(E^{\prime}\right)}{S(E)} \operatorname{Exp}\left[-y\left(E^{\prime}\right)+y(E)\right]  \tag{3-5}\\
& +\Phi_{P P}(E, X)+\Phi_{N P}(E, X)
\end{align*}
$$

$$
\begin{align*}
& \Phi_{N}(E, X+\Delta X)=\Phi_{N}(E, X) \operatorname{Exp}\left[-\Sigma_{N}(E) \cdot \Delta E\right]  \tag{3-6}\\
&+\Phi_{P N}(E, N)+\Phi_{N N}(E, X)
\end{align*}
$$

where $\Delta X=$ layer thickness, and $E^{\prime}$ is defined in terms of the range, $R(E)$.

$$
\begin{equation*}
R\left(E^{\prime}\right)=R(E)+\Delta X \tag{3-7}
\end{equation*}
$$

The terms in the exponent of Equation 3-5 are defined in Equation 3-8.

$$
\begin{equation*}
\mathrm{y}(\mathrm{E})=\int_{0}^{\mathrm{E}} \frac{\sum_{\mathrm{P}}\left(\mathrm{E}^{\prime \prime}\right)}{\mathrm{S}\left(\mathrm{E}^{\prime}\right)} \mathrm{dE} \mathrm{E}^{\prime \prime} \tag{3-8}
\end{equation*}
$$

The production terms, $\Phi_{\mathrm{AB}}(\mathrm{E}, \mathrm{X})$, are given in Equations 3-9 through 3-12.

$$
\begin{align*}
& \Phi_{P P}(E, X+\Delta X)= \\
& \int_{X}^{X+\Delta x}\left[\int_{E^{\prime}}^{\infty} \Phi_{P}\left(E_{I}, x\right) \cdot \sum_{P}\left(E_{I}\right) \cdot \tau_{P P}\left(E_{I}, E_{S}\right) d E_{I}\right] \frac{S\left(E_{S}\right)}{S\left(E_{I}\right)} d x  \tag{3-9}\\
& \Phi_{N P}(E, X+\Delta X)= \\
& \int_{X}^{X+\Delta x}\left[\int_{E_{S}}^{\infty} \Phi_{N}\left(E_{I}, x\right) \cdot \Sigma_{N}\left(E_{I}\right) \cdot \tau_{N P}\left(E_{I}, E_{S}\right) d E_{I}\right] \frac{S\left(E_{S}\right)}{S\left(E_{I}\right)} d x  \tag{3-10}\\
& \Phi_{\mathrm{PN}}(\mathrm{E}, \mathrm{X}+\Delta \mathrm{X})= \\
& \int_{X}^{X+\Delta x}\left[\int_{E}^{\infty} \Phi_{P}\left(E_{I}, x\right) \cdot \sum_{P}\left(E_{I}\right) \cdot \tau_{P N}\left(E_{I}, E_{S}\right) d E_{I}\right] d x  \tag{3-11}\\
& \Phi_{\mathrm{NN}}(\mathrm{E}, \mathrm{X}+\Delta \mathrm{X})= \\
& \int_{X}^{X+\Delta x}\left[\int_{E}^{\infty} \Phi_{N}\left(E_{I}, x\right) \cdot \Sigma_{N}\left(E_{I}\right) \cdot \tau_{N N}\left(E_{I}, E_{S}\right) d E_{I}\right] d x \tag{3-12}
\end{align*}
$$

where

$$
\left.\left.\begin{array}{rl}
\mathrm{E}_{\mathrm{I}}= & \text { energy of incident particle suffering an inelastic } \\
& \text { collision at } \mathrm{x}, \mathrm{X} \leq \mathrm{x} \leq \mathrm{X}+\Delta \mathrm{X}
\end{array}\right) \quad \begin{array}{rl}
\mathrm{E}_{\mathrm{S}}= & \text { energy of secondary particles emerging from inelastic } \\
& \text { collision }
\end{array}\right\}
$$

The reduction of Equations 3-9 through 3-12 to a more tractable form is explained in an earlier report. ${ }^{6}$ The assumptions used in the derivation are listed below.

- The flux of particles available for producing inelastic collisions is unaffected by nuclear collisions within the layer.
- The flux of cascade particles generated throughout a layer is not attenuated by nuclear collisions. Layer thickness is generally a few percent of the inelastic mean free path inside the layer and does not produce additional cascade particles within the layer.
- The cascade nucleon sources are distributed realistically through the layer.
- The effect of energy losses due to ionization within the layer is taken into account, both for proton initiated reactions and for cascade protons produced in the layer.
- The effect of nuclear attenuation and ionization losses is considered in attenuating particles which are incident on the layer.
- Finally, it is assumed that the cascade nucleon production function is separable as in Equation 3-13.

$$
\begin{equation*}
\tau_{A B}\left(E_{I}, E_{S}\right)=F_{A B}\left(E_{I}\right) \cdot G_{A B}(E S) \tag{3-13}
\end{equation*}
$$

The final form of Equations 3-9 through 3-12 is given below.

$$
\begin{equation*}
\Phi_{P P}(E, X+\Delta X)=R_{P P}\left(E^{\prime}\right) \frac{1}{S(E)} \int^{E^{\prime}} F_{P P}\left(E_{S}\right) d E_{S} \tag{3-14}
\end{equation*}
$$

$$
\begin{align*}
& R_{P P}\left(E^{\prime}\right)=\int_{E}^{E} \max _{P P}\left(E_{I}\right) \Phi_{P}\left(E_{I}, X\right) \quad \sum_{P}\left(E_{I}\right) d E_{S}  \tag{3-15}\\
& \Phi_{N P}(E, x+\Delta X)=\frac{1}{S(E)} \int_{E}^{E^{\prime}} R_{N P}\left(E_{S}\right) F_{N P}\left(E_{S}\right) d E_{S}  \tag{3-16}\\
& R_{N P}\left(E_{S}\right)=\int_{E_{S}}^{E}{ }^{\max } G_{N P}\left(E_{I}\right) \Phi_{N}\left(E_{I}, X\right) \Sigma_{N}\left(E_{I}\right) d E_{I}  \tag{3-17}\\
& \Phi_{P N}(E, X+\Delta X)=F_{P N}(E) \int_{E}^{E} \max G_{P N}\left(E_{I}\right) R_{P N}\left(E_{I}, X\right) \quad \sum_{P}\left(E_{I}\right) d E_{I}^{(3}  \tag{3-18}\\
& R_{P N}\left(E_{I}, X\right)=\frac{1}{S\left(E_{I}\right)} \int_{E^{\prime}}^{E^{\prime}} \Phi_{P}\left(E^{\prime \prime}, X\right) d E^{\prime \prime}  \tag{3-19}\\
& \Phi_{N N}(E, X+\Delta X)=\Delta X F_{N N}(E) \int_{E}^{E} \max G_{N N}\left(E_{I}\right) \cdot \Phi_{N}\left(E_{I}, X\right) \cdot \sum_{N}\left(E_{\mathrm{I}}\right) d E_{I}^{(3-20)} \tag{3-20}
\end{align*}
$$

The code proceeds step by step through the shield, calculating the energy spectra of primary protons and cascade protons and neutrons after each layer. The energy mesh may contain up to 250 points divided into four ranges with constant energy spacing within each range. The shield may contain up to 100 layers divided into ten or fewer homogeneous strata.

The monoenergetic spectrum case is treated in a straightforward manner by adding a single term to Equations 3-3 and 3-4 to account for secondaries produced by the monoenergetic beam. The monoenergetic option is exact in the sense that a true line spectrum is used for primary protons while a continuous spectrum is used for cascade secondaries. Further details may be obtained from an earlier report. ${ }^{38}$

## Evaporation Neutron Dose

Protons and neutrons incident on a layer may suffer inelastic collisions with the shield nuclei. The treatment of cascade nucleons ejected in the first stage of the de-excitation process has been described in the preceding section. The residual nucleus is left in a highly excited state and more particles may be emitted. Since these evaporation particles possess relatively little energy, charged nucleons are stopped quickly. However, the evaporation neutrons may increase the transmitted dose significantly for shields of moderate to large thickness.
The energy spectrum of the evaporation neutrons is continuous with an upper bound of 10 to 20 Mev . The data $15,16,21,26,27,28$ available indicate that the spectrum peaks below one Mev and resembles the fission spectrum within experimental error.
The evaporation neutron source term as a function of shield thickness is computed according to Equation 3-21.

$$
\begin{gather*}
S_{e v}(X) d X=\frac{d X}{\cos \theta} \int_{0}^{E} \max \Phi_{P}(E, X) \Sigma_{P}(E) Y_{P}(E) d E  \tag{3-21}\\
\quad+\frac{d X}{\cos \theta} \int_{0}^{E} \max \Phi_{N}(E, X) \Sigma_{N}(E) Y_{N}(E) d E
\end{gather*}
$$

where

$$
\begin{aligned}
& S_{e v}(X)=\text { evaporation neutron source density at } X, \\
& \text { ( } \mathrm{n} / \mathrm{gm}-\mathrm{sec} \text { ) } \\
& \begin{aligned}
& \Phi_{\mathrm{P}}(\mathrm{E}, \mathrm{X}), \Phi_{\mathrm{N}}(\mathrm{E}, \mathrm{X})= \text { total proton (neutron) number flux, differential } \\
&\text { in energy, at } \left.\mathrm{X}, \text { (particles } / \mathrm{cm}^{2}-\mathrm{sec}-\mathrm{Mev}\right)
\end{aligned} \\
& \Sigma_{P}(E), \quad \sum_{N}(E)=\begin{array}{c}
\text { inelastic cross section for protons (neutrons), } \\
\left(\mathrm{cm}^{2} / \mathrm{gm}\right)
\end{array} \\
& Y_{P}(E), Y_{N}(E)=\underset{\text { inelastic collision }}{\text { average isotropic evaporation neutron yield per }} \\
& \theta=\text { angle of incidence. }
\end{aligned}
$$

If the incident proton flux is isotropic, the evaporation neutron source term is computed according to Equation 3-22.

$$
\begin{align*}
& S_{e v}(X) d X=d X 2 \pi \\
& \int_{0}^{1} \frac{d(\cos \theta)}{\cos \theta} \int_{0}^{E} \max \left[\Phi_{P}(E, X, \theta) \cos \theta \cdot \Sigma_{P}(E) Y_{P}(E)\right.  \tag{3-22}\\
&\left.+\Phi_{N}(E, X, \theta) \cos \theta \Sigma_{N}(E) Y_{N}(E)\right] d E
\end{align*}
$$

where the explicit flux angular distribution is considered.
The evaporation neutron dose, $\mathrm{D}_{\mathrm{ev}}(\mathrm{X})$, at shield thickness X is given by Equation 23.

$$
\begin{equation*}
D_{e v}(X)=\int_{0}^{X} T\left(X-X^{\prime}\right) S_{e v}\left(X^{\prime}\right) d X^{\prime} \tag{3-23}
\end{equation*}
$$

where $T\left(X-X^{\prime}\right)$ is the dose transmission function for neutrons emitted isotropically from a plane source at $X^{\prime}$ to the exit surface at $\mathbf{X}$. Both the dose transmission function and the source function are assumed to vary exponentially within each layer. With this approximation, Equation 3-24 may be integrated analytically to yield the dose after m layers.

$$
\begin{gather*}
\mathrm{D}_{\mathrm{ev}}\left(\mathrm{X}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \Delta \mathrm{X}_{\mathrm{i}}\right)= \\
\sum_{\mathrm{i}=1}^{m} \Delta \mathrm{X}_{\mathrm{i}} \frac{\left[\mathrm{~T}\left(\mathrm{X}_{\mathrm{m}}-\mathrm{X}_{\mathrm{i}}\right) \mathrm{S}_{\mathrm{ev}}\left(\mathrm{X}_{\mathrm{i}}\right)-\mathrm{T}\left(\mathrm{X}_{\mathrm{m}}-\mathrm{X}_{\mathrm{i}-1}\right) \mathrm{S}_{\mathrm{ev}}\left(\mathrm{X}_{\mathrm{i}-1}\right)\right]}{\ln \left[\mathrm{T}\left(\mathrm{X}_{\mathrm{m}}-X_{\mathrm{i}}\right) \mathrm{S}_{\mathrm{ev}}\left(\mathrm{X}_{\mathrm{i}}\right) / T\left(\mathrm{X}_{\mathrm{m}}-\mathrm{X}_{\mathrm{i}-1}\right) \mathrm{S}_{\mathrm{ev}}\left(\mathrm{X}_{\mathrm{i}-1}\right)\right]} \tag{3-24}
\end{gather*}
$$

In the case where the denominator vanishes for, say the $\mathrm{j}^{\text {th }}$ term, the dose contribution becomes

$$
\begin{equation*}
\Delta D_{e v}\left(X, X_{j-1} \text { to } X_{j}\right)=\Delta X_{j} T\left(X-X_{j}\right) S_{e v}\left(X_{j}\right) \tag{3-25}
\end{equation*}
$$

The quantity still to be determined is the dose transmission function, $T\left(X-X^{\prime}\right)$. Even with the assumption that evaporation neutrons are emitted isotropically with a fission spectrum, the transmission function is difficult to evaluate. Moments method data ${ }^{14,18}$ are available for a few elements and compounds. However, these data apply to an infinite homogeneous medium so that material changes and boundaries are not taken into account properly. Monte Carlo data $2,3,4,10,29$ are available for a few elements and compounds; but, again, data are not available for material changes and the particular boundary conditions of interest. Further, the incorporation of a neutron Monte Carlo penetration computation into the code would be quite prohibitative from the standpoint of computer time.

The neutron attenuation scheme incorporated into the proton penetration code is a point kernel approach based upon experimental removal cross sections for non-hydrogenous materials proposed by Albert and Welton. ${ }^{1}$ Certain constants in the equations are adjusted to normalize to moments method data for light elements and water and to Monte Carlo data for iron and other heavy elements.

The evaporation neutron dose transmission function is given in Equation 3-26:

$$
\begin{equation*}
\mathrm{T}\left(\mathrm{X}-\mathrm{X}^{\prime}\right)=\frac{1}{2} \int_{0}^{1} \frac{\mathrm{G}\left(\mathrm{X}-\mathrm{X}^{\prime}, \theta\right)}{\cos \theta} \mathrm{d}(\cos \theta) \tag{3-26}
\end{equation*}
$$

where $G\left(X-X^{\prime}, \theta\right)$ represents the material attenuation kernel. For non-hydrogenpus shields:

$$
\begin{equation*}
G\left(X-X^{\prime}, \partial\right)=C_{o} \operatorname{Exp}\left(-\sum_{i} K_{i} S_{i} r_{i}\right) \tag{3-27}
\end{equation*}
$$

where $C_{0}=1.5 \times 10^{-5} \mathrm{rad} / \mathrm{hr}$ per $\mathrm{n} / \mathrm{cm}^{2}$-sec
$\mathrm{i}=$ layer number describing layers between $\mathrm{X}^{\prime}$ and X
$K_{i}=1$ for elements with atomic number 2 through 6
$S_{i}=$ removal cross section for the $i^{\text {th }}$ layer ( $\mathrm{cm}^{2} / \mathrm{gm}$ )
$r_{i}=$ slant penetration distance in the $i^{\text {th }}$ layer $\left(\mathrm{gm} / \mathrm{cm}^{2}\right)$.
The values of $K_{i}$ are chosen to improve the fit to moments method data for beryllium and carbon and to Monte Carlo data for iron.

For hydrogenous shields:

$$
G\left(X-X^{\prime}, \theta\right)=C_{1}\left(\sum_{i} H_{i} \frac{r_{i}}{P_{i}}\right)^{C_{2}} \operatorname{Exp}\left[-C_{3}\left(\sum_{i} H_{i} \frac{r_{i}}{P_{i}}\right)^{C}\right] \cdot \operatorname{Exp}\left(-\sum_{i} S_{i} r_{i}\right)
$$

where $C_{1}=8.8610^{-5}$
$C_{2}=0.29$
$\mathrm{C}_{3}=0.83$
$\mathrm{C}_{4}=0.58$
$\mathrm{H}_{\mathrm{i}}=$ hydrogen density in layer i relative to the hydrogen density in water

$$
P_{i}=\text { density of the material in layer } i\left(g m / \mathrm{cm}^{3}\right) .
$$

The intermediate case, where some layers contain hydrogen and some do not creates a special problem. This case is treated somewhat arbitrarily as follows. The material attenuation kernel is approximated by Equation 3-28 with the value of $\mathrm{S}_{\mathrm{j}}$ replaced by $\mathrm{L}_{\mathrm{j}} \mathrm{S}_{\mathrm{j}}$. The quantity $\mathrm{L}_{\mathrm{j}}$ equals $\mathrm{K}_{\mathrm{j}}$ if no hydrogenous material follows layer $j$. However, if hydrogenous layers follow layer $j$, the value of $L_{j}$ is chosen according to the recipe:

$$
\begin{align*}
& L_{j}=1 \text {. for } K_{j}=1 \\
& L_{j}=0.5+\left(\sum_{i=j+1}^{i} \frac{\max _{i} H_{i}}{P}\right) / 15 \text { or } 1 ., \text { whichever is less, for } K_{j}=0.5 \tag{3-29}
\end{align*}
$$

The above procedure assumes that the equivalent of six inches of water will reestablish the water equilibrium fast neutron spectrum.

The methods described above enable the code to treat attenuation of evaporation neutrons in non-hydrogenous and hydrogenous shields or in multistrata shields of arbitrary composition. Further experimental and theoretical work is required to test the validity of the attenuation calculation and to examine the variation in evaporation neutron spectra as a function of atomic number and bombarding energy.

## Cascade Gamma Ray Source

Protons and neutrons incident on a layer may suffer inelastic collisions with the shield nuclei. The treatment of cascade nucleons and evaporation nucleons which are ejected in the first two phases of the de-excitation process has been described in preceding sections. Gamma rays are emitted in competition with the evaporation phase and are the dominant decay mode when residual excitation energy falls below the nucleon emission threshold. Evaluation of the gamma ray source distribution in the shield is described below. The evaluation of gamma ray dose is relegated to a separate program, MSGAM.

The model used in calculating cascade gamma ray spectra is detailed in the description of the LIGHT program. The method develops a discrete spectrum arising from transitions between discrete excited states, and a continuum spectrum arising from transitions originating in the continuum of excited states. The discrete spectrum is assumed independent of bombarding energy except that the gamma ray energy must be smaller than the bombarding energy. The discrete gamma ray yield which is generated at a layer interface is given by Equation 3-30.

$$
\begin{equation*}
P_{D}\left(E_{G i}, X\right)=G_{3}\left(E_{G i}\right) \int_{E_{G i}}^{E} \max \left[\Phi_{P}^{*}(E, X) \sum_{P}(E)+\Phi_{N}^{*}(E, X) \Sigma_{N}(E)\right]^{d E} \tag{3-30}
\end{equation*}
$$

where $\quad P_{D}\left(E_{G i}\right)=\begin{aligned} & \text { number of discrete photons per gram-sec at } \\ & \\ & \text { energy } E_{G i} \text { and at position } X\end{aligned}$
$\mathrm{G}_{3}\left(\mathrm{E}_{\mathrm{Gi}}\right)=$ number of discrete photons at energy $\mathrm{E}_{\mathrm{Gi}}$ per inelastic collision
$\Phi_{\mathrm{P}}^{*}(\mathrm{E}, \mathrm{X}), \Phi_{\mathrm{N}}^{*}(\mathrm{E}, \mathrm{X})=\begin{aligned} & \text { total proton (neutron) number flux, differential } \\ & \\ & \text { in energy, at position } \mathrm{X}\end{aligned}$
$\Sigma_{\mathrm{P}}(\mathrm{E}), \Sigma_{\mathrm{N}}(\mathrm{E})=$ inelastic proton (neutron) cross section.
The total proton number flux at energy E and position X is, for the isotropic case:

$$
\begin{equation*}
\Phi_{P}^{*}(E, X)=2 \cdot \cdot 2 \pi \int_{0}^{1} \Phi_{P}(E, X, \theta) d(\cos \theta) \tag{3-31}
\end{equation*}
$$

where the factor of 2 is due to the transformation from the slab to the spherical shield. For monodirectional beams:

$$
\begin{equation*}
\Phi_{P}^{*}\left(E, X \mid=\Phi_{P}(E, X, \theta)\right. \tag{3-32}
\end{equation*}
$$

Similar equations define the total neutron number flux.
The continuum gamma ray yield is obtained in a somewhat different way. Analysis of a large quantity of data produced by program LIGHT reveals that the continuum gamma ray yield from a single inelastic collision, $Y_{G}\left(E_{G}, E_{B}\right)$ may be represented by a product of two functions.

$$
\begin{equation*}
Y_{G}\left(E_{G}, E_{B}\right)=G_{1}\left(E_{B}\right) G_{2}\left(E_{G}\right) \tag{3-33}
\end{equation*}
$$

where $\mathrm{E}_{\mathrm{G}}$ is the gamma ray energy and $\mathrm{E}_{\mathrm{B}}$ is the nucleon bombarding energy. This separability condition permits a simple solution to the continuum gamma ray source equation.

$$
\begin{gather*}
P_{C}\left(E_{G i}, X\right)=E_{G i} \int_{E_{G i}^{*}}^{E_{G i+1}^{*}} \frac{G_{2}(E)}{E} d E \cdot \int_{E_{G i}}^{100}\left[\Phi_{P}^{*}\left(E_{B}, X\right) \sum_{P}\left(E_{B}\right)\right.  \tag{3-34}\\
\left.+\Phi_{N}^{*}\left(E_{B}, X\right) \Sigma_{N}\left(E_{B}\right)\right] G_{1}\left(E_{B}\right) d E_{B}
\end{gather*}
$$

The first integral in Equation 3-34 reduces the photon spectrum, which is differential in energy, to a line spectrum similar to the discrete spectrum. The discrete energies and the continuum range boundaries are given below.

$$
\begin{gathered}
\mathrm{E}_{\mathrm{Gi}}=1,2,3, \ldots 9,10 \\
\mathrm{E}_{\mathrm{Gi}}^{*}=0,1.5,2.5,3.5, \ldots 8.5,9.5,50
\end{gathered}
$$

The proton penetration code computes and sums the discrete and continuum gamma ray spectra and, upon request, outputs the data on punched cards. This output consists of ten source terms, one per energy, at the entrance and exit faces and at each layer interface. The units of each source are photons per gram-second.

## INPUT DATA PREPARATION

LPPC is a set of subroutines linked by an editor. Input will be divided among the routines; there are 3 routines that require input: (1) the editor, MNGR90, (2) the library routine, PPCLIB, and (3) the execution routine, EXE.

Input to MNGR90
There are eight cards that may be interpreted by MNGR90. Seven are macro-instructions to control flow of data between various routines in the system and the eighth is a comment card.

The card form is $\$$ in column 1 and an instruction beginning in column 7. Comments may begin in any column in the comment card, other than column 1.

The instructions and their functions are:

1. WRITE LIBRARY - PPCLIB is instructed to read library data from cards and prepare a library tape.
2. EDIT LIBRARY - PPCLIB is instructed to update the library tape by replacing old data and/or inserting new data from cards.
3. EXECUTE - EXE is instructed to perform a shield calculation.
4. PRINT LIBRARY - PPCLIB is instructed to print the contents of the library tape on the off-line printer.
5. EXIT - MNGR90 will relinquish control to MONITOR after completion of current group of macro-instructions.
6. DUMP - MNGR90 will, after completion of current group of macroinstructions, dump the contents of the core and then relinquish control to MONITOR.
7. TAPE (XXXXXX) - MNGR90 notes that the tape is stored or is to be stored in a tape bin whose name is $\operatorname{XXXXXX}$.
8. Comment card.

Input to PPCLIB
PPCLIB has three entry points, LIB, EDT, and PRT. PRT is the entry for printing the contents of the library and requires no input cards. LIB and EDT are the write and edit entries respectively and require an A type card described below.
See Figure 11 for illustration of A type and associated cards.
IATNUM is the number assigned to the material for recognition.
NEVAL is the number of entries in the EI, SI, RI table. Note that exactly NEVAL cards must follow the A card. NEVAL must be 60 or less.
RHO is the density of the material, TC is its removal cross section and HP is the hydrogen density in the material divided by the hydrogen density in water.
EI, SI, and RI are energy mesh points, stopping powers at the mesh points, and ranges at the mesh points. The KPP card follows the last EI card. The quantities are developed by program NCON.
NGV is the number of mesh points at which the production constants for secondary particles are tabulated. NGV is 20 or less.
Exactly NGV cards must follow the NGV card.
EEGV is the energy at the mesh point. The four G's are provided by NCON. TSCV is the inelastic mean free path; $\mathbf{P}$ and N are production constants for evaporation neutrons due to proton and neutron interactions respectively.

$$
\begin{aligned}
& \text { LATNUM } \\
& \text { NEVAL } \\
& \text { NCV }
\end{aligned}
$$

$\begin{array}{ll}2 & \text { NEVAL } \\ 3 & \text { NGV }\end{array}$
$C \longrightarrow$ indicates remainder of card may be used for comments.
figure 11 data input format - library roltine

NG1, NG2, and NG3 are the number of entries in the G1, G2, and G3 tables respectively. The G 1 table represents the function, $\mathrm{G}_{1}\left(\mathrm{E}_{\mathrm{B}}\right)$, the G 2 table represents the function, $\mathrm{G}_{2}\left(\mathrm{E}_{\mathrm{G}}\right)$, and the G 3 table represents the function, $\mathrm{G}_{3}\left(\mathrm{E}_{\mathrm{Gi}}\right)$; these three functions are described in the "Cascade Gamma Ray Source" part of the LPPC section. G2E is the energy entry, and G1 is the associated value of $\mathrm{G}_{1}\left(\mathrm{E}_{\mathrm{B}}\right) ; \mathrm{G} 2 \mathrm{E}$ is the energy entry, and G 2 is the associated value of $\mathrm{G}_{2}\left(\mathrm{E}_{\mathrm{G}}\right)$; G3E is the energy entry, and G3 is the associated value of $\mathrm{G}_{3}\left(\mathrm{E}_{\mathrm{Gi}}\right)$. The entries in these three tables are determined from the output data of program LIGHT.

Blank cards are permitted between data blocks, but none should be placed within a data block.

## Input to EXE

Five types of cards are required: An I card, an option card, an EMAX card, a DX card, and a XMAX card. A sixth card, indicating the cosine of the incident angle, and a seventh card or set of cards contining the desired proton spectrum, may be required. The prerequisite for six or more cards in a data set is the use of the pertinent option in the option card. See Figure 12.

1. The I card

Column 1 contains an $I$, and columns 2-73 are alphameric data used as a heading.
2. The option card (all numbers are integers)

Columns 1-5 LDS, problem number
Columns 6-7 ISPTO; $1,2,3$, or 4, spectrum type
1 Power law
2 Exponential law
3 Read tabulated table
4 Monoenergetic
Columns 8-9 IOUT1; 0 or 1 (nonisotropic option)
0 Do not print
1 Print spectrum between layers
Columns 10-11 IOUT2; 0 or 1
0 Do not print
1 Print input spectrum
figure 12 data input format - execute routine

Columns 12-13 IOUT3; 0 or 1, incident angle option
0 Cosine of incident angle equals 1.
1 Cosine of incident angle to be read from data card.
Columns 14-15 ISO; 0 or 1, isotropic switch
0 Incident angle of monodirectional beam determined by IOUT3
1 Incident proton flux is isotropic
Columns 16-17 PRTISO; 0 or 1 (isotropic option only)
0 Do not print
1 Print angular dose after each layer
Columns 18-19 PCHISO; 0 or 1 (isotropic option only)
0 Do not punch
1 Punch isotropic data
Columns 20-21 GAMS; 0 or 1, gamma source option
0 Do not punch gamma source data
1 Punch gamma source data
Columns 22-25 NR; material number of receiver
Columns 26-28 NSL; number of layers in the shield (this number must equal the number of entries in the DX card)

Columns 29-32 $\quad \mathrm{NS}_{1}$; material number of outermost (incident face) material.

Columns 33-36 $\mathrm{NS}_{2}$; material number of next material.
Continue with 4 -column fields until NSL NS $_{i}$ values are entered. The option card format is (I5, 8I2, I4, I3, 10I4).
3. The EMAX card (all numbers must have a decimal point).

Columns 1-8 EMAX; maximum energy considered
Columns 9-13 EMIN; minimum energy considered
Columns 14-18 EMINS; minimum energy for input spectrum tabulation
Columns 19-24 EB1; )
25-30 EB2; ) These are exactly as described for the
31-36 EB3; ) spectrum converter (LSSC).
37-41 DEL1;)

Columns 42-46 DEL2;) These are exactly as described for the
47-51 DEL3;) 52-56 DEL4;) spectrum converter (LSSC).

Columns $\begin{aligned} 57-64 & \mathrm{~A} ;) \\ 65-72 & \mathrm{~B} ;)\end{aligned}$ Constants for power or exponential spectra.
4. The DX card; step sizes for stepping through the various layers.

Columns 1-7 $\quad \mathrm{DX}_{1}$ step size in first layer
Columns 8-14 $\quad \mathrm{DX}_{2}$ step size in second layer
Entries are continued until all desired step sizes and/or all layers are satisfied. The DX card format is (10E7.).
5. The XMAX card; the thickness of each layer

Columns 1-7 $\mathrm{XMAX}_{1}$, the thickness of the first layer (incident face)
Columns 8-14 $\mathrm{XMAX}_{2}$, the thickness of the second layer
Entries are continued until the number of entries equals NSL (i.e., the number of entries in the DX card). The XMAX card format is (10E7.).

Note: The units for the entries in the DX and XMAX cards are grams per centimeter squared.
6. The COST card; the cosine of the incident angle for a monodirectional proton beam

Columns 1-7 COST
The COST card format is (E7.).
7. Spectrum cards

The type of spectrum cards to be read depends on ISPTO. No cards will be read for ISPTO = 1, 2; and EM type card will be read for ISPTO $=4$; and KFP type cards will be read for ISPTO $=3$.
a. EM card (10E7.)

Columns 1-7 EM; energy of monoenergetic input
Columns 8-14 PHIM; flux at energy EM
b. KFP cards

Card 1
Columns 1-3 KFP; number of mesh points

Columns 4-75 72 alphameric heading characters
Following cards:
Columns 1-10 EFP E $_{1}$; energy at mesh point 1
Columns 11-20 FP $_{1}$; flux at energy EFP $\mathrm{E}_{1}$
Columns 21-30 EFP $_{2}$; energy at mesh point 2
Columns 31-40 EP ${ }_{2}$; flux at energy $E F P_{2}$ (see Figure 1).
Continue as above until KFP spectrum mesh points have been read.

Blank cards may be used between data sets, but should not be used within a data set, multiple data sets may be used.

## Stops and Error Types

## LPPC has 2 programmed stops

If sense switch 2 is down at the beginning of the run, a comment to lift sense switch 2 will appear on the printer and the program will halt with HPR 77776 in the storage register. Lift sense switch 2 and press start.

The "Break In" stop is HPR 77777. Mount library tape on B6 and press start. If the library tape is being mounted for editing, a comment to insert ring in reel will appear on the printer.

A mispunched data card may cause a comment to be listed off line, along with the bad card and the format being used; the program then exits to the 1-CS record of the FORTRAN MONITOR through subroutine NLIXIT.

An error in LIB, EDT, PRT, EXE will cause a printed diagnostic, and execution will continue if possible. The error types are listed below:
(1, L) EOF while reading library tape
(2, L) Failure to read library tape in 10 tries
$(3, L)$ Failure to write a legible record on the library tape in 5 tries
$(4, \mathrm{~L})$ Failure to erase properly
$(5, \mathrm{~L})$ No library input data on input tape (A2)
(0, E) EOF while reading library tape
(1, E) Error while reading receiver data
( $2, E$ E) Error while reading shield data

Error types with a tag of L denote errors while in LIB, EDT, or PRT; those with a tag of E denote errors in EXE.

Miscellaneous Comments
A job which is overtime should be stopped by depressing sense switch 2. Information that has been calculated will be printed. There is no restart procedure. Since LPPC outputs to A3 by channel trapping, it is possible to lose up to 399 lines of output if the above procedure is not followed.

The system tape is $A 1$, input tape $A 2$, output $A 3$, punch tape B4, the library tape B6. Tape B3 is used as a scratch tape by EDT.

If the above tape assignments are changed, one must not assign A3 as a new input tape.

The present editor, MNGR90, permits multiple processing and will process successive blocks defined by appropriate "\$" cards until \$ EXIT or \$ DUMP is encountered.

A $\$$ DUMP or $\$$ EXIT will cause a PM and/or exit when the current pass is completed.

Tape bin locations should not be changed by subsequent \$ TAPE (XXX) cards.
The procedure used by MNGR90 in routing program control is to read all instruction cards containing a $\$$ in column 1 until a non $\$$ card is encountered. MNGR90 then rearranges the instructions in logical order and initiates a pass. If one of the instructions is an EXIT or DUMP card, all other instructions will be processed first. If no EXIT or DUMP instruction is given, control will return to MNGR90 after current instructions are executed. MNGR90 will then search the input tape for the next group of $\$$ instruction cards. If an end of file is encountered before a "\$ EXIT" card, all unprocessed macro-instructions will be processed and then control will be passed to the MONITOR system.

## OUTPUT FORMAT

With the option to print the spectrum after each layer of the shield "on":
a. The top left-hand section of the page contains Hollerith information from the I-card.
b. The top right-hand section of the page identifies the RECEIVER material, the SHIELD material, the LAYER from which the
spectrum is emerging, the THICKNESS of the shield up to and including this layer, and the date.

Note: The date may or may not print properly depending on the monitor system at the installation.
c. The rest of the page contains the number flux versus energy, E , for PRIMARY proton, TOTAL proton (i.e., primary plus cascade proton), and cascade NEUTRONS. The energy points are determined from values given on the "EMAX card".

Note: The spectrum after each layer is obtainable only with the normally incident flux option.

With the initial spectrum print option "on":
a. The top left-hand section of the page contains Hollerith information from the I-card.
b. The top right-hand section of the page contains the words INPUT SPECTRUM - and the date.
c. The rest of the page contains the incident proton number flux, PHI(E), versus energy, E. The energy points are determined from values given on the "EMAX card".

With the option to print data, resulting from isotropically incident flux, after each layer:
a. The top left-hand section of the page contains Hollerith information from the I-card.
b. At the top right-hand side of each block of data (usually 3 to a page, each block representing a layer) is information identifying the RECEIVER material, the SHIELD material, the LAYER, and the shield THICKNESS up to and including the layer in question.
c. Each layer is represented by a block of information containing 11 rows and 11 columns plus column headings. The column headings are as follows:
(1) THETA - The cosine of the angle between the particle velocity vector and the slab normal.
(2) FPMAX - Total proton number flux.
(3) FNMAX - Total neutron number flux.
(4) SEVAP - Evaporation neutron source strength ( $\mathrm{n} / \mathrm{gm}-\mathrm{sec}$ ) at the layer exit face due to protons and neutrons travelling through the layer in the direction THETA.
(5) PNUC - Dose rate (rad/hr) corresponding to energy removal from the proton beam minus PRIMARY minus SECONDARY (local deposition assumption).
(6) NNUC - Dose rate (rad/hr) corresponding to energy removal from the neutron beam minus NEUTRON (local deposition assumption).
(7) PRIMARY - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to primary protons.
(8) SECONDARY - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to cascade protons.
(9) NEUTRON - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to cascade neutrons.
(10) TOT. ION. - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to primary plus cascade protons.
(11) PRI + CASC - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to primary and cascade protons plus cascade neutrons.

The data on the summary page are as follows:
a. The top left-hand section contains Hollerith information from the I-card.
b. The top right-hand section identifies the RECEIVER material; the SHIELD material(s); the number of LAYERS in each shield material; and whether the incident flux is isotropic, in which case ISOTR is printed, or monodirectional, in which case the cosine of the angle is printed.
c. Directly below a. and b. is the following information:
(1) SPECT. - Indicates incident spectrum option.
(2) $\mathrm{E}(\mathrm{MAX})$ - Maximum incident particle energy (Mev).
(3) E (MIN) - Minimum energy to be considered, not necessarily minimum source energy (Mev).
(4) EB1, EB2, EB3, DEL1, DEL2, DEL3, and DEL4 are explained in the "input data" section.
(5) $\mathbf{X}$ (MAX) - Thickness ( $\mathrm{gm} / \mathrm{cm}^{2}$ ) of each material in the shield, and total thickness of shield.
(6) DELTA (X) - Step size ( $\mathrm{gm} / \mathrm{cm}^{2}$ ) in each shield material.
(7) A

- The coefficient " $A$ " in the power law spectrum $A E^{-B}$, or the coefficient " $A$ " in the exponential law spectrum $A e^{-E / B}$.
(8) B
- The parameter "B" in the power law spectrum or the exponential law spectrum.
d. The rest of the page(s) contain 13 columns with the following headings:
(1) LAYER - Indicates the layer exit face to which the data pertains.
(2) X - Thickness $\left(\mathrm{gm} / \mathrm{cm}^{2}\right)$ of the shield, up to and including this layer.
(3) FP(MAX) - Total proton number flux.
(4) FN(MAX) - Total neutron number flux.
(5) S(EVAP) - Evaporation neutron source strength ( $\mathrm{n} / \mathrm{gm}-\mathrm{sec}$ ) at the layer exit face due to proton and neutron interactions with nuclei.
(6) PRI. ION - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to primary protons.
(7) SEC. ION - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to cascade protons.
(8) $\mathrm{P}(\mathrm{NUC}) \quad$ - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) corresponding to energy removal from the proton beam minus PRI. ION minus SEC. ION (local deposition assumption).*
(9) $\mathrm{N}(\mathrm{NUC}) \quad$ - Dose rate (rad/hr) corresponding to energy removal from neutron beam minus $D$ (NEUT) (local deposition assumption). *
(10) $\mathrm{D}(\mathrm{NEUT})$ - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to cascade neutrons.
(11) $\mathrm{D}(E V A P)$ - Dose rate ( $\mathrm{rad} / \mathrm{hr}$ ) due to evaporation neutrons.
(12) $D$ (TOT) - Total dose rate ( $\mathrm{rad} / \mathrm{hr}$ ); the sum of PRI. ION, SEC. ION, D(NEUT), and D(EVAP).

[^0](13) D (MAX) - Total dose rate (rad/hr); the sum of D (TOT), $P(N U C)$, and $N(N U C)$.

## 4. INELASTIC GAMMA PRODUCTION CODE (LIGHT)

## CODE DESCRIPTION

The LIGHT code estimates gamma ray spectra resulting from inelastic nucleon-nucleus collisions. Gamma ray transitions from excited levels of the nucleus are traced, and an estimate of gamma ray production following direct interactions and nucleon evaporation may be made. Gamma rays due to proton bremsstrahlung, beta ray bremsstrahlung, annihilation radiation, and collective dipole effects are not considered.

The excited residual nucleus following inelastic scattering may decay through a number of channels provided that sufficient energy is available. $8,22,33,37$ Nucleon evaporation is usually the dominant decay mode above the nucleon emission threshold but exceptions have been observed. For example, the 15.1 Mev level of $\mathrm{C}^{12}$ decays by gamma ray emission $80 \%$ of the time. ${ }^{35}$ For excited states below the nucleon binding energy, gamma ray emission generally proceeds much faster than beta ray emission or internal conversion.

A complete calculation of gamma ray de-excitation should consider the different nuclei possible following direct or knock-on processes. Each residual nucleus would then be traced through the cascade and evaporation stage until a stable configuration is achieved. It is possible to do such a calculation by Monte Carlo methods, but the lack of nuclear level data and the effort required militate against this detailed procedure at the present time.

The present calculation is based upon a simple statistical model of the nucleus supplemented by knowledge of the low-lying nuclear levels. The method is based upon the work of Troubetzkoy. 44

Level Density
The level distribution of the target nucleus is shown in Figure 1. Discrete levels are taken from the Nuclear Data Sheets. ${ }^{35}$ In the continuum, the level density is taken from Bethe's equation, 4-1, with constants derived from the fit of Varshni. ${ }^{45}$

$$
\begin{equation*}
\rho(\mathrm{E})=\frac{1}{\mathrm{P}}(\mathrm{AE})^{-2} \operatorname{Exp}\left[2(\mu \mathrm{AE})^{1 / 2}\right] \tag{4-1}
\end{equation*}
$$

where $\rho(E)=$ level density

$$
A=\text { mass number }
$$

$E=$ excitation energy

$$
\mu=0.1023
$$

$$
P=\left\{\begin{array}{l}
0.03583 \text { for even } A, \text { odd } Z \\
0.07630 \text { for odd } A \\
0.2592 \text { for even } A, \text { even } Z
\end{array}\right.
$$

## Transition Probability

A highly excited nucleus may decay through a series of electric and/or magnetic multipole transitions. Theoretical arguments ${ }^{8}$ indicate that low order multipole transitions are favored over the next higher one by factors ranging from $10^{3}$ to $10^{6}$ although smaller factors are observed. Similarly, electric transitions are favored over magnetic transitions of the same multipole order except for parity unfavored cases. These trends, together with a desire for simplicity, lead to a choice of electric dipole-type transitions in the model.

The assumption of electric dipole transitions leads to the following transition probabilities:

$$
\begin{gather*}
S_{1}\left(E, E^{\prime}\right)=f_{1}(E)\left(E-E^{\prime}\right)^{3} \rho\left(E^{\prime}\right) \\
S_{2}\left(E, E_{i}\right)=f_{2}(E)\left(E-E_{i}\right)^{3}  \tag{4-2}\\
S_{3}\left(E_{j}, E_{i}\right)=f_{3}\left(E_{j}\right)\left(E_{j}-E_{i}\right)^{3}
\end{gather*}
$$

where $S\left(E, E^{\prime}\right)=$ radiative transition probability from a state at $E$ to a state between $E^{\prime}$ and $E^{\prime}+\mathrm{dE}^{\prime}$
$f(E)=$ normalization factor
$\mathrm{E}=$ energy of initial state in the continuum
$E^{\prime}=$ energy of final state in the continuum
$E_{j}=$ energy of initial state in the discrete region
$E_{i}=$ energy of final state in the discrete region.

The subscript 1 refers to transitions within the continuum; 2 , to transitions from the continuum to discrete levels; and 3, to transitions between discrete levels.

The normalizing factors are given by:

$$
\begin{gather*}
f_{1}(E)=\frac{\frac{\Gamma_{\gamma}(E)}{\Gamma(E)}}{\sum_{i=0}^{n}\left(E-E_{i}\right)^{3}+\int_{E_{c}}^{E} \rho\left(E^{\prime}\right)\left(E-E^{\prime}\right) d E^{\prime}}  \tag{4-3}\\
f_{2}(E)=f_{1}(E) \\
f_{3}\left(E_{j}\right)=\frac{1}{\sum_{i=0}^{j-1}\left(E_{j}-E_{i}\right)^{3}} \cdot \frac{\Gamma_{\gamma}\left(E_{j}\right)}{\Gamma\left(E_{j}\right)}
\end{gather*}
$$

where $\quad \Gamma_{\gamma}(E)=$ radiative level width
$\Gamma(E)=$ total level width
$\mathrm{E}_{\mathrm{c}}=$ lowest energy in the continuum.

## Level Population

The initial level population, $\mathrm{R}^{\mathrm{O}}(\mathrm{E})$, is defined as the probability that a level will be occupied immediately as a result of the inelastic collision. According to the statistical model, $\mathrm{R}^{\mathrm{O}}(\mathrm{E})$ is given by Equation 4-4.

$$
\begin{equation*}
R^{o}(E)=N \frac{E_{m}-E}{T^{2}} \operatorname{Exp}\left(-\frac{E_{m}-E}{T}\right) \tag{4-4}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
\mathrm{T} & =\frac{\mathrm{E}_{\mathrm{m}}}{\sqrt{2 \mu \mathrm{AE}_{\mathrm{m}}-2}}, \mathrm{~N}=\text { normalizing factor } \\
\mathrm{E}_{\mathrm{m}} & =\text { nucleon bombarding energy. }
\end{aligned}
$$

The total level population is defined as the probability that a level will be occupied either by the initial excitation or by transitions from higher levels.

This probability may be expressed as an integral equation, Equation 4-5, for levels in the continuum. The subscript c designates continuum values.

$$
\begin{equation*}
R_{c}(E)=R_{c}^{o}(E)+\int_{E}^{E} m R_{c}\left(E^{\prime}\right) S_{1}\left(E^{\prime}, E\right) d E^{\prime} \tag{4-5}
\end{equation*}
$$

Equation 4-5 may be solved by use of the variable substitution defined in Equation 4-6.

$$
\begin{equation*}
\psi(E)=\frac{R_{c}(E)-R_{c}^{o}(E)}{\rho(E)} \tag{4-6}
\end{equation*}
$$

Equation 4-5 becomes, after substitution:

$$
\begin{equation*}
\rho(E) \psi(E)=\int_{E}^{E} m R_{c}\left(E^{\prime}\right) f_{1}\left(E^{\prime}\right)\left(E^{\prime}-E\right)^{3} \rho(E) d E^{\prime} \tag{4-7}
\end{equation*}
$$

Differentiating four times with respect to E yields:

$$
\begin{equation*}
\psi^{\prime \prime \prime}(E)=6 f_{1}(E) \rho(E) \psi(E)+6 f_{1}(E) R_{c}^{0}(E) \tag{4-8}
\end{equation*}
$$

Equation 4-8 is solved by numerical integration using the boundary conditions:

$$
\psi^{\prime \prime \prime}\left(E_{m}\right)=\psi^{\prime \prime}\left(E_{m}\right)=\psi^{\prime}\left(E_{m}\right)=\psi\left(E_{m}\right)=0
$$

Once Equation $4-8$ is solved, the level population in the continuum is found from relation 4-6.

The level population in the discrete region is found from Equation 4-9. The subscript $D$ designates values in the discrete region.

$$
\begin{equation*}
R_{D}\left(E_{i}\right)=R_{D}^{o}\left(E_{i}\right)+\sum_{j=i+1}^{n} R_{D}\left(E_{j}\right) S_{3}\left(E_{j}, E_{i}\right)+\int_{E_{c}}^{E_{m}} R_{c}\left(E^{\prime}\right) S_{2}\left(E^{\prime}, E_{i}\right) d E^{\prime} \tag{4-9}
\end{equation*}
$$

The first term in Equation 4-9 represents initial excitation; the second term, transitions from higher discrete levels; the third term, transitions from the continuum.

## Gamma Ray Spectrum

Given the level density, level population, and transition probabilities, it is possible to compute the resulting gamma ray spectrum.

A discrete spectrum is obtained by computing transitions between discrete levels as in Equation 4-10.

$$
\begin{equation*}
P D\left(E_{j}-E_{i}\right)=R_{D}\left(E_{j}\right) S_{3}\left(E_{j}, E_{i}\right), E_{j}>E_{i} \text { photons } \tag{4-10}
\end{equation*}
$$

Since 50 excited states are permitted by the dimensions in LIGHT, a maximum of $(50 / 2)(50+1)$ or 1275 discrete transitions may be calculated. The largest number of discrete excited states considered to date is 36 for aluminum, leading to 666 lines. The LIGHT program sums these transitions into 10 energy groups ranging from 1 to 10 Mev . The number flux is corrected to insure energy conservation in the summing process.

A continuous gamma ray spectrum is obtained by computing transitions within the continuum and from the continuum to discrete states, as shown in Equation 4-11.

$$
\begin{array}{r}
\operatorname{PS}\left(E_{\gamma}\right)=\int_{E_{c}+E_{\gamma}}^{E_{m}} R_{c}(E) S_{1}\left(E, E-E_{\gamma}\right) d E  \tag{4-11}\\
+\sum_{i=0}^{n} R_{c}\left(E_{i}+E_{\gamma}\right) S_{2}\left(E_{i}+E_{\gamma}, E_{i}\right) \text { photons } / M e v
\end{array}
$$

The continuous gamma ray spectrum may be integrated over small energy ranges to yield a line spectrum similar to the discrete gamma ray spectrum.

Gamma Ray Emission Following Evaporation and Direct Processes
For excitation energies well above the nucleon binding energy, the radiative width falls to a small fraction of the total level width. $8,11,33,43$ The great majority of decays from these levels proceed by evaporation of a nucleon or cluster of nucleons. In general, the residual nucleus is still in an excited state and may decay via gamma ray transitions. The present model discontinues the cascade following particle emission so that the additional contribution is not computed.

Gamma ray production following nucleon evaporation is crudely estimated in the following way. The LIGHT code is run at energies near the nucleon emission threshold where discrete gamma ray transitions are the dominant decay mode. The intensity distribution of these discrete gamma rays is assumed to be valid for neighboring excited nuclei which are the products of nucleon evaporation. At higher bombarding energies, the discrete transition spectrum decreases due to the small $\Gamma_{\gamma} / \Gamma$ ratio, but the above assumption
partially compensates for the loss. No attempt is made to compute transitions in the continuum after nucleon evaporation because of their minor importance.

Gamma ray production following knock-on processes, in which several nucleons may be ejected, and nucleon capture are treated in a similar way. The residual nucleus is generally left in an excited state. It may decay by evaporation of nucleons or by competitive gamma ray emission. Again, the gamma rays emitted by the highly excited nucleus are ignored following knock-on processes, and the gamma ray spectrum emitted after the evaporation phase is completed is assumed to resemble that of the parent nucleus.

These approximations are illustrated in Figure 13. The dash-dot lines represent, from left to right, a knock-on reaction with two nucleons emerging, an inelastic scatter with one nucleon emerging, and a capture reaction. The solid vertical arrows represent gamma ray cascades. The dashed vertical arrows for nuclei $\mathrm{A}-1$ and $\mathrm{A}+1$ represent gamma rays not accounted for in the calculation. The solid vertical arrows for these same nuclei are assumed to be identical with the solid vertical arrows associated with nucleus A which are below the nucleon binding energy.

A sample of the LIGHT code results for aluminum is given in Table E and Figure 14. Table E presents the discrete gamma ray spectrum per inelastic collision for 10 Mev protons on aluminum. The spectrum shown is reduced from 666 discrete lines. Figure 14 illustrates the continuous gamma ray spectrum per inelastic collision as a function of bombarding energy.

TABLE E
DISCRETE GAMMA RAY SPECTRUM

| Energy (Mev) | Photons |
| :---: | :---: |
| 1 | 0.506 |
| 2 | 0.163 |
| 3 | 0.208 |
| 4 | 0.230 |
| 5 | 0.244 |
| 6 | 0.209 |
| 7 | 0.092 |
| 8 | 0.047 |
| 9 | 0.033 |



## FIGURE 13 EXCITATION AND DE-EXCITATION SCHEME FOR BOMBARDED NUCLEUS



FIGURE 14 CONTINUUM GAMMA RAY INTENSITY AT SEVERAL ENERGIES VERSUS PROTON BOMBARDING ENERGY

## GLOSSARY OF INPUT DATA TERMS

IK - An integer indicating the number of different nuclei to be bombarded.
$A T(K)$ - The atomic mass number of the $k^{\text {th }}$ nucleus.
FMU(K) - A constant of the level density formula ( $\mu=0.1023$ for all nuclei).
$\mathrm{CP}(\mathrm{K})$ - A coefficient of the level density formula for the $\mathrm{k}^{\text {th }}$ nucleus. 45 $=3.583 \times 10^{-2}$ for odd nuclei
$=7.630 \times 10^{-2}$ for odd-mass nuclei $=2.592 \times 10^{-1}$ for even nuclei

HD - Hollerith information (e. g. , to identify the nucleus being "bombarded").

NI - An integer indicating the number of discrete energy levels to be read. (Ground state is a level of zero energy and must be counted.)

EI(I) - The energy of the $i^{\text {th }}$ level. All levels are of non-negative energy and must be in an increasing sequence with the ground state first. (Mev)

NJ - An integer indicating the number of entries in the $\Gamma_{\gamma} / \Gamma_{\mathrm{T}^{\text {-table. }}}$.
EJ(I) - The $i^{\text {th }}$ energy at which the $i^{\text {th }} \Gamma_{\gamma} / \Gamma_{\mathrm{T}}$ is tabulated. (Mev)
G(I) $\quad$ - The $i^{\text {th }} \Gamma_{\gamma} / \Gamma_{T}$.
EC - The greatest lower bound energy of the level density continuum. (Mev)

EM - The proton bombarding energy. (Mev)
DEI - The step size to be used in the numerical solution of the differential equation. DEI $\geq\left(E_{m}-E_{c}\right) / 1000$.

## INPUT DATA PREPARATION

Card Type 1-Columns 1-5 contain an integer, IK. This number must be right adjusted in the I-field. This integer must equal the number of cards Type 2 that follow.

Card Type 2 - Columns 1-10, the atomic mass number; columns 11-20, the constant $\mathrm{FMU}(\mathrm{K})$; columns 21-30, the coefficient CP(K).

The format for card Types 1 and 2 is ( $55 /(3 \mathrm{E} 10$.$) ).$
The following card types are read in a "DO LOOP" ranging over the number, IK, of nuclei.

Card Type 3-72 columns of the Hollerith information to identify the nucleus being investigated. FORMAT (12A6).

Card Type 4-Columns 1-5 contain an integer, NI. This number must be right adjusted in the I-field. This integer must equal the number of discrete energy levels of the nucleus.

Card Type 5-Eight fields of nine columns each, containing the energy, EI(I) (Mev), of each energy level of the nucleus. Cards Type 5 are continued until the number of levels indicated in card Type 4 has been satisfied.

The format for card types 4 and 5 is ( $\mathrm{I} 5 /(8 \mathrm{E} 9$.$) ).$
Card Type 6 - Columns 1-5 contain an integer, NJ. This number must be right adjusted in the I-field. This integer must equal the number of entries in the $\Gamma_{\gamma} / \Gamma_{\mathrm{T}}$ table.

Card Type 7 - Eight fields of nine columns each; the 1st, 3rd, 5th, and 7th fields contain the energies, $\mathrm{EG}(\mathrm{I})(\mathrm{Mev})$; the 2nd, 4th, 6th and 8th fields contain the $\Gamma_{\gamma} / \Gamma_{\mathrm{T}}$ ratio, $\mathrm{G}(\mathrm{I})$, corresponding to the preceding energy. Cards Type 7 are continued until the number of entries indicated in card Type 6 is satisfied.

The format for card Types 6 and 7 is (I5/(8E9.)).
Card Type 8 - Columns 1-9, the value of EC for the nucleus being considered; columns 10-18, the bombarding energy, EM;
columns 19-27, the step size, DEI. Cards Type 8 should be repeated for each bombarding energy to be considered. The last card Type 8 for each nucleus should be a blank card. FORMAT (8E9.).

## OUTPUT FORMAT

The information output is data from the heading card, card Type 3. Next, the greatest lower bound energy ( EC ) of the continuum and the nuclear bombarding energy (EM) are indicated. Beneath EC and EM is a tabulation of the discrete energy levels for the nucleus being bombarded. Two columns of data follow the energy level tabulation; the first is an energy list, and the second is the value of the $\Gamma_{\gamma} / \Gamma_{T}$ ratio corresponding to the given energy. Next, the atomic mass numbers and the parameters for the level density function are displayed for all elements being considered on this run. On the next page, the total number of transitions between discrete energy levels is indicated. Then, there are four columns of tabulated data; two columns indicate the transition energies, EGP(I), and two columns exhibit the number of photons, $\mathrm{PD}(\mathrm{I})$, participating in the transitions. Below this tabulation, the continuous transition energy flux, the discrete transition energy flux, the total continuous initial energy, and the total discrete initial energy are displayed. On the next page, a tabulation of four columns is presented; two columns indicate photon energy, EG(I), and two columns indicate differential photon number flux, PS(I), with respect to energy. The next tabulation presents an equivalent to the discrete transition photon number flux, EFS(N), listed at integral energies, EGA(N), from one to ten Mev and the continuous transition photon differential number flux, EIS(N), in ten equally spaced energy intervals at the average energy, EGI(N). The last page of output for a given nucleus and bombarding energy displays the continuous transition photon differential number flux, PSS(L), at integral energy, GMA(L), values.

## CODE DESCRIPTION

The Lockheed Multi-Slab Gamma Code (MSGAM) estimates gamma dose rates at the exit face of a multi-layer shield; wherein the photon sources are generated by nucleon inelastic collisions within the shield. The photons are transmitted from the source location to the exit face by "line-of-sight" attenuation and appropriate build-up factors. 12

The gamma dose rate at the shield exit face is estimated by:

$$
\begin{array}{r}
D\left(E_{\gamma}\right)=F\left(E_{\gamma}\right) E_{Y} \sum_{i=1}^{N} \sum_{j=1}^{2} \int_{0}^{d_{i}} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{S\left(d_{i}-x_{i j}, E_{\gamma}\right)}{4 \pi \rho_{i j}^{2}} e^{-t_{i j}}  \tag{5-1}\\
\quad \cdot B_{\left(t_{i j}, E_{\gamma}\right) r d r d \psi d x}
\end{array}
$$

In Equation (5-1),
N is the number of layers,
$F\left(E_{\gamma}\right)$ is the energy flux-to-dose conversion factor,
$\mathrm{E}_{\gamma}$ is the photon energy,
$S\left(d_{i}-x_{i j}, E_{\gamma}\right)$ is the source strength of photons with energy $E_{\gamma}$ at the $j^{\text {th }}$ source point in the $i^{\text {th }}$ layer,
$d_{i}$ is the thickness of the $i^{\text {th }}$ layer,
$\mathrm{x}_{\mathrm{ij}}$ is the normal distance from the $\mathrm{j}^{\text {th }}$ source point in the $\mathrm{i}^{\text {th }}$ layer to the exit face of the $\mathrm{i}^{\text {th }}$ layer,
$\rho_{\mathrm{ij}}$ is the "line-of-sight" distance from the $\mathrm{j}^{\text {th }}$ source point in the $\mathrm{j}_{\mathrm{i}}$ th layer to the exit face of the shield,
${ }^{\mathrm{t}} \mathrm{ij}$ is the number of mean-free-paths from the $\mathrm{j}^{\text {th }}$ source point in the $i^{\text {th }}$ layer to the exit face of the shield,
$B\left(t_{i j}, E_{\gamma}\right)$ is the build-up factor pertaining to the photon transmission from the $j^{\text {th }}$ source point in the $i^{\text {th }}$ layer to the exit face of the shield.

The range of source points per layer is limited to two in this code in order to make it compatible with the data obtainable from the Lockheed Proton Penetration Code (LPPC).

By fitting the product of the source strength, $S\left(d_{i}-x_{i j}, E_{\gamma}\right)$, and the buildup, $\left.\mathrm{B}_{\left(\mathrm{t}_{\mathrm{ij}},\right.} \mathrm{E}_{\boldsymbol{\gamma}}\right)$, at two consecutive source points to an expression of the form $\mathrm{A}_{\mathrm{i}} \mathrm{e}^{\mathrm{a}_{\mathrm{i}} \mathrm{X}}$, the integrations indicated in Equation 5-1 may be performed analytically giving rise to the general equation:

$$
\begin{align*}
D\left(E_{\gamma}\right)= & \sum_{i=1}^{N} \frac{A_{i} E_{\gamma} F\left(E_{\gamma}\right)}{2 a_{i}}\left\{e^{a_{i} d_{i}} E_{1}\left(b_{i} d_{i}-c_{i}\right)\right. \\
- & -e^{-\frac{a_{i} b_{i}}{b_{i}}} E_{1}\left[\left(1-\frac{a_{i}}{b_{i}}\right)\left(b_{i} d_{i}+c_{i}\right)\right]  \tag{5-2}\\
- & \left.E_{1}\left(c_{i}\right)+e^{-\frac{a_{i} c_{i}}{b_{i}}} E_{1}\left[\left(1-\frac{a_{i}}{b_{i}}\right) c_{i}\right]\right\}
\end{align*}
$$

where $b_{i}=\underset{\text { energy }}{\mu_{i}\left(E_{\gamma}\right)}$, the mass attenuation coefficient for the $i^{\text {th }}$ layer at the

$$
\begin{aligned}
c_{i} & =\sum_{k=i+1}^{N} \mu_{k}\left(E_{\gamma}\right) d_{k} \\
E_{1}(Z) & =\int_{1}^{\infty} \frac{e^{-z t}}{t} d t
\end{aligned}
$$

In addition to the general case, Equation 5-2, which is valid for most values of the $a_{i}{ }^{\prime} s, b_{i}$ 's, and $c_{i}$ 's, there are six special cases arising from values and relations of the $a_{i}{ }^{\prime} s, b_{i}{ }^{\prime} s$, and $c_{i} ' s$ :

Case I. $c_{i}=0, a_{i}<b_{i}$

$$
\begin{align*}
& D\left(E_{\gamma}\right)=\sum_{i=1}^{N} \frac{A_{i} E_{\gamma} F\left(E_{\gamma}\right)}{2 a_{i}}\left\{e^{a_{i} d_{i}} E_{1}\left(b_{i} d_{i}\right)-E_{1}\left[\left(1-\frac{a_{i}}{b_{i}}\right) b_{i} d_{i}\right]\right.  \tag{5-3}\\
&\left.-\ln \left(1-\frac{a_{i}}{b_{i}}\right)\right\}
\end{align*}
$$

Case II. $c_{i}=0,0<b_{i}<a_{i}$

$$
\begin{align*}
D\left(E_{Y}\right) & =\sum_{i=1}^{N} \frac{A_{i} E_{\gamma} F\left(E_{Y}\right)}{2 a_{i}}\left\{e^{a_{i} d_{i}} E_{1}\left(b_{i} d_{i}\right)+\ln \left(b_{i} d_{i}\right)\right. \\
& \left.+\sum_{k=1}^{\infty} \frac{\left(\frac{a_{i}}{b_{i}}-1\right)^{k}\left(b_{i} d_{i}\right)^{k}}{k \cdot k!}+0.577216 \ldots\right\} \tag{5-4}
\end{align*}
$$

Case III. $c_{i}=0, a_{i}=b_{i}$

$$
\begin{equation*}
D\left(E_{Y}\right)=\sum_{i=1}^{N} \frac{A_{i} E_{Y} F\left(E_{Y}\right)}{2 a_{i}}\left\{e^{a_{i} d_{i}} E_{1}\left(b_{i} d_{i}\right)+\ln \left(b_{i} d_{i}\right)+0.577216\right\} \tag{5-5}
\end{equation*}
$$

Case IV. $c_{i} \neq 0, a_{i}=b_{i}$

$$
\begin{gather*}
D\left(E_{\gamma}\right)=\sum_{i=1}^{N} \frac{A_{i} E_{\gamma} F\left(E_{\gamma}\right)}{2 a_{i}}\left\{e^{a_{i} d_{i}} E_{1}\left(b_{i} d_{i}+c_{i}\right)-E_{i}\left(c_{i}\right)\right. \\
\left.+e^{-c_{i}} \ln \left(\frac{b_{i} d_{i}+c_{i}}{c_{i}}\right)\right\} \tag{5-6}
\end{gather*}
$$

Case V. $\mathrm{c}_{\mathrm{i}} \neq 0,0<\mathrm{b}_{\mathrm{i}}<\mathrm{a}_{\mathrm{i}}$

$$
\begin{align*}
& D(E \quad)=\sum_{i=1}^{N} \frac{A_{i} E_{\gamma} F\left(E_{Y}\right)}{2 a_{i}}\left\{e^{a_{i} d_{i}} E_{1}\left(b_{i} d_{i}+c_{i}\right)+e^{-\frac{a_{i} c_{i}}{b_{i}}}\left[\ln \left(b_{i} d_{i}+c_{i}\right)\right.\right. \\
& \left.\left.\quad+\sum_{k=1}^{\infty} \frac{\left(\frac{a_{i}}{b_{i}}-1\right)^{k}\left(b_{i} d_{i}+c_{i}\right)^{k}}{k \cdot k!} \sum_{k=0}^{\infty} \frac{\left(\frac{a_{i}}{b_{i}}-1\right)^{k} c_{i}^{k}}{k \cdot k!}-\ln \left(c_{i}\right)\right]-E_{1}\left(c_{i}\right)\right\} \tag{5-7}
\end{align*}
$$

Case VI. $a_{i}=0$

$$
\begin{equation*}
D\left(E_{\gamma}\right)=\sum_{i=1}^{N} \frac{A_{i} E_{y} F\left(E_{\gamma}\right)}{2 b_{i}}\left\{E_{2}\left(c_{i}\right)-E_{2}\left(b_{i} d_{i}+c_{i}\right)\right\} \tag{5-8}
\end{equation*}
$$

The build-up factors used for photon dose transmission through a multi-layer shield are calculated by one of three methods. First, the shield is considered as being composed of one material; the attenuation and numbers of mean-freepaths are calculated using the mass attenuation coefficients ${ }^{20}$ of the actual materials, and the build-up is calculated using the equivalent material. Second, the shield is considered as consisting of two layers of different materials, the first layer of a "light" material and the second layer of a "heavy" material. Third, the shield is considered as consisting of two layers of different materials, the first layer of a "heavy" material and the second layer of a "light" material. For methods 2 and 3, the attenuation and numbers of mean-free-paths are determined using the mass attenuation coefficients of the materials present; whereas, the build-up factors are computed using the formulae developed by M. H. Kalos as presented by H. Goldstein. ${ }^{18}$ The build-up factors for single materials in all three methods are calculated from the polynomial representations presented by M. A. Capo. ${ }^{12}$

The code is designed to compute the gamma dose rate emerging from the first layer, the first two layers, the first three layers, etc.; therefore, there must be one "case card" for each set of layers (i.e., one case card for the first layer, one for the first two, one for the first three, etc.).

The "case cards" indicate which of the above three methods is to be used to calculate the build-up factors; that is, whether the layers under consideration are to be treated as one equivalent thickness, two equivalent thicknesses, light-heavy, or two equivalent thickness, heavy-light. Also to be indicated in the "case card" are the number of layers in each equivalent thickness and the material of equivalence for each equivalent thickness.

The number of layers, the thickness of each layer, and the source strength for each photon energy at each "interface" may be determined from the LPPC output. The step-size, DELTA (X), used in LPPC to step through the shield determines the number of layers in the shield. The number of interfaces is equal to the number of layers plus one.

## GLOSSARY OF INPUT DATA TERMS

NTOT - The total number of elements for which mass attenuation and build-up tables are to be read.
$\mathrm{Z}(\mathrm{K}) \quad$ - The atomic numbers of the elements in the tables in the same sequence as the tables.
$\operatorname{NRA}(J) \quad$ - An integer indicating the form of the polynomial used to calculate the build-up factor
$=1, \mathrm{~B}(\mathrm{X}, 1 / \mathrm{E})-$ a polynomial in X and $1 / \mathrm{E}$
$=2, B(X, E)-$ a polynomial in $X$ and $E$
$=3, \mathrm{~B}(\mathrm{X}, 1 / \mathrm{E})$ for $\mathrm{E} \leq 4.0 \mathrm{Mev} ; \mathrm{B}(\mathrm{X}, \mathrm{E})$ for $\mathrm{E}>4.0 \mathrm{Mev}$
$X$ - the number of mean-free-paths
E - energy (Mev)
$\mathrm{NI}(J) \quad-\quad$ The range of the subscript " K " in the coefficient, $\mathrm{CB}(\mathrm{J}, \mathrm{K}, \mathrm{L})$, of the build-up factor polynomial for the $j^{\text {th }}$ element.
$\mathrm{NJ}(\mathrm{J}) \quad-\quad$ The range of the subscript " $L$ " in the coefficient, $\mathrm{CB}(\mathrm{J}, \mathrm{K}, \mathrm{L})$, of the build-up factor polynomial for the $j^{\text {th }}$ element.

NFDCF - The number of entries in the energy flux-to-dose conversion factor table.

EC(I) - The energy (Mev) of the $\mathrm{i}^{\text {th }}$ energy flux-to-dose conversion factor entry.

CV(I) $\quad$ - The $i^{\text {th }}$ energy flux-to-dose conversion factor entry. ( $\mathrm{r}-\mathrm{hr}^{-1} \mathrm{MMev}^{-1} \mathrm{~cm}^{2}-\mathrm{sec}$ )

NEL - An integer indicating the number of layers in the shield.
D (I) $\quad$ - The thickness in $\mathrm{gm} / \mathrm{cm}^{2}$ of the $\mathrm{i}^{\text {th }}$ layer.
NEIT(I) - The number of entries in the mass attenuation table for the $i^{\text {th }}$ element.
$\operatorname{EM}(\mathrm{J}, \mathrm{L}) \quad$ - The energy associated with the $1^{\text {th }}$ mass attenuation entry for the $\mathrm{j}^{\text {th }}$ element (Mev).
$\operatorname{FMU}(\mathrm{J}, \mathrm{L}) \quad-$ The $1^{\text {th }}$ mass attenuation entry for the $\mathrm{j}^{\text {th }}$ element $\left(\mathrm{cm}^{2} / \mathrm{gm}\right)$.
NCPT - The number of entries in the Compton scattering table.
$\operatorname{EU}(\mathrm{J}, \mathrm{L})$ - The energy associated with the $1^{\text {th }}$ Compton scattering entry for the $\mathfrak{j}^{\text {th }}$ element (Mev).

FMUC(J, L) - The $1^{\text {th }}$ Compton scattering entry for the $j^{\text {th }}$ element $\left(\mathrm{cm}^{2} / \mathrm{gm}\right)$.
$\mathrm{CB}(\mathrm{J}, \mathrm{K}, \mathrm{L})$ - The coefficient, $\mathrm{C}_{\mathrm{kl}}$, in the polynomial for computing the build-up factors in the $j^{\text {th }}$ element.

$$
\begin{aligned}
& B(X, 1 / E)=\sum_{k=1}^{N I(J)} \sum_{l=1}^{N J(J)} C_{k l} x^{k-1}(1 / E)^{1-1} \\
& B(X, E)=\sum_{k=1}^{N I(J)} \sum_{l=1}^{N J(J)} C_{k l} x^{k-1} E^{1-1}
\end{aligned}
$$

NEG - The number of source energies.
EG(I) - The $i^{\text {th }}$ source energy.
$\operatorname{SSS}(\mathrm{K}, \mathrm{L}) \quad$ - The source strength of the $1^{\text {th }}$ energy at the $\mathrm{k}^{\text {th }}$ interface. (photons/gm-sec)

LNB(I) - An "ordinal" number indicating the location of the mass attenuation table for the $i^{\text {th }}$ shield material.

NBO - An integer indicating the equivalence status of the shield -
= 1 , one equivalent thickness;
$=2$, two equivalent thicknesses, light-heavy;
$=3$, two equivalent thicknesses, heavy-light.
NL1 - The number of layers in the first equivalent thickness.
NL2 - The number of layers in the second equivalent thickness.
LE1 - An "ordinal" number indicating the location of the build-up table of the material of equivalence for the first equivalent thickness.

LE2 - An "ordinal" number indicating the location of the build-up table of the material of equivalence for the second equivalent thickness.

## INPUT DATA PREPARATION

Card Type 1 - Columns 1-5, the number, NTOT, of materials in the mass attenuation and build-up tables - including those elements that must be entered twice, such as tungsten. FORMAT (14I5).

Card Type 2 - Eight fields of nine columns per field, each field contains the atomic number of the elements in the attenuation tables. The number of entries must equal NTOT in card type 1. FORMAT (8E9.).

Card Type 3 - Columns 1-5, the integer NRA(J) for the $\mathrm{j}^{\text {th }}$ set in the attenuation tables; columns 6-10, the integer $\mathrm{NI}(\mathrm{J})$ for the same set; columns 11-15, the integer $N J(J)$. There must be a card type 3 for each entry in card type 2. The values for these integers may be obtained from Reference 3.

Card Type 4 - Columns 1-5, the number, NFDCF, of entries in the energy flux-to-dose conversion factor table.

Card Type 5 - Columns 1-9, the energy associated with the first energy flux-to-dose conversion factor; columns 10-18, the first energy flux-to-dose conversion factor; columns 19-27, the energy associated with the second energy flux-to-dose conversion factor; columns 28-36, the second energy flux-todose conversion factor; etc. Entries are continued, 9 columns per entry, until NFDCF energy flux-to-dose conversion factors have been read. FORMAT (I5/(8E9.)).

Card Type 6 - Columns 1-5, the number, NEL, of "layers" in the shield. A "layer" is defined as the region between two consecutive source points.

Card Type 7 - Six fields of 12 columns per field, each field contains the thickness, $\mathrm{gm} / \mathrm{cm}^{2}$, of a layer - in order from incident face to exit face. FORMAT (I5/(6E12.)).

Card Type 8 - Fourteen fields of five columns per field, each field contains an integer NEIT(I). FORMAT (14I5).

Card types 9, 10, 11, and 12 are read in a DO. LOOP ranging from one to NTOT.

Card Type 9 - Columns 1-9, the energy associated with the first mass attenuation coefficient; columns $10-18$, the first mass attenuation coefficient; columns 19-27, the energy associated with the second mass attenuation coefficient; columns 28-36, the second mass attenuation coefficient; etc. Entries are continued, 9 columns per entry, until NEIT(I) mass attenuation coefficients have been read. FORMAT (8E9.).

Card Type 10-Columns 1-5, an integer, NCPT, indicating the number of entries in the Compton scattering table.

Card Type 11 - Columns 1-9, the energy associated with the first Compton scattering entry; columns 10-18, the first Compton scattering entry; columns 19-27, the energy associated with the second Compton scattering entry; columns 28-36, the second Compton scattering entry; etc. Entries are continued,

9 columns per entry, until NCPT Compton scattering entries have been read. FORMAT (I5/(8E9.))

Card Type 12 - Seven fields of ten columns per field, each field contains a CB(J, K, L). See Reference 3. FORMAT (7E10.)

Card Type 13 - Columns 1-5, the number, NEG, of source energies.
Card Type 14 - Eight fields of nine columns per field, each field contains a source energy. Entries are continued until NEG source entries have been read. FORMAT (I5/(8E9.))

Cards type 15 are read in a DO LOOP ranging over the number of interfaces; i.e., the number of layers plus one.

Card Type 15 - Six fields of twelve columns per field, each field contains the source strength, $\operatorname{SSS}(\mathrm{K}, \mathrm{L})$, for the $1^{\text {th }}$ energy at the $\mathrm{k}^{\text {th }}$ interface. The entries are order by energy and then by interface - from incident face to exit face. FORMAT (6E10.)

Card Type 16 - Fourteen fields of five columns per field containing the integers LNB(I). FORMAT (14I5)

Cards type 17 are "case cards". There should be one card for each cumulative set of layers - i.e., one card for the first layer, one for the first two, one for the first three, etc.

Card Type 17 - Columns 1-5, the integer NBO indicating the build-up factor calculation option; columns 6-10, the number, NL1, of layers in the first equivalent thickness; columns 11-15, the number, NL2, of layers in the second equivalent thickness; columns 16-20, the number, LE1, indicating the material of equivalence for the first equivalent thickness; columns 21-25, the number, LE2, indicating the material of equivalence for the second equivalent thickness.

## OUTPUT FORMAT

The output of the MSGAM code consists of one output set for each cumulative set of layers - i.e., one for the first layer, one for the first two layers, one for the first three layers, etc. Each output set has the following format.

First, the build-up factor option is indicated, either single equivalent thickness, two equivalent thicknesses, light-heavy, or two equivalent thicknesses, heavy-light. Next, the total number of layers pertaining to the output set is indicated; for the single equivalent thickness case, this is followed by the material of equivalence; for the two equivalent thicknesses cases, the total number of layers is followed by the number of layers in the first equivalent thickness, and then the materials of equivalence for the first and second thicknesses are indicated. Next, the total number of source points which contribute to this output set. Following this are the thicknesses of each layer. Then the layer materials are indicated. The source energies are displayed in a row of ten entries. Below the source energies are the dose rates resulting from each layer at each energy - each row represents a layer and each column represents the dose rate at the energy above it. Next, the total dose rate at each energy is output, summed over layer. Finally, the total dose rate, summed over energy, is indicated.

## CODE DESCRIPTION

The input values for the Nuclear Constants Code are defined by their association with the following equations. These equations determine the nuclear cascade production used in the Lockheed Proton Penetration Code.

$$
\begin{align*}
& =\frac{E_{B}\left(\frac{E_{p}+E_{n}}{E_{B}}\right) \frac{1}{\left[1+\left(\frac{E_{n}}{E_{p}}\right)_{p}\right]}}{N \bar{E}\left(E_{B}, C_{p p}, K_{p p}\right)}  \tag{6-1}\\
& =\frac{E_{B}\left(\frac{E_{p}+E_{n}}{E_{B}}\right)\left(\frac{E_{n}}{E_{p}}\right)_{p} \frac{1}{\left[1+\left(\frac{E_{n}}{E_{p}}\right)_{p}\right]}}{N \bar{E}\left(E_{B}, C_{p n}, K_{p n}\right)}  \tag{6-2}\\
& =\frac{E_{B}\left(\frac{E_{p}+E_{n}}{E_{B}}\right) \frac{1}{\left[1+\left(\frac{E_{n}}{E_{p}}\right)_{n}\right]}}{N \bar{E}\left(E_{B}, C_{n p}, K_{n p}\right)}  \tag{6-3}\\
& \frac{E_{B}\left(\frac{E_{p}+E_{n}}{E_{B}}\right)\left(\frac{E_{n}}{E_{p}}\right)_{n} \frac{1}{\left[1+\left(\frac{E_{n}}{E_{p}}\right)_{n}\right]}}{N \bar{E}\left(E_{B}, C_{n n}, K_{n n}\right)} \tag{6-4}
\end{align*}
$$

where

$$
\begin{equation*}
N \bar{E}\left(E_{B}, C_{x y}, K_{x y}\right)=\int_{0}^{E} \frac{E d E}{\left(E+C_{x y}\right)} K_{x y} \tag{6-5}
\end{equation*}
$$

For an incident particle, $x$, with energy $E_{B}$, the number, $\tau_{x y}$, of secondary particles of type $y$, with energy $\mathrm{E}_{\mathrm{S}}$ is given by

$$
\begin{equation*}
\tau_{x y}\left(E_{B}, E_{S}\right)=G_{x y}\left(E_{B}\right) \cdot \frac{1}{\left(E_{S}+C_{x y}\right)}{ }_{x y} \tag{6-6}
\end{equation*}
$$

## GLOSSARY OF INPUT DATA TERMS

CPP - The " $\mathrm{C}_{\mathrm{pp}}$ " in Equation 6-1.
CNP - The " $\mathrm{C}_{\mathrm{np}}$ " in Equation 6-3.
CPN - The " $\mathrm{C}_{\mathrm{pn}}$ " in Equation 6-2.
CNN - The " $\mathrm{C}_{\mathrm{nn}}$ " in Equation 6-4.
RPP - The " $\mathrm{K}_{\mathrm{pp}}$ " in Equation 6-1.
RNP - The " $\mathrm{K}_{\mathrm{np}}$ " in Equation 6-3.
RPN - The " $\mathrm{K}_{\mathrm{pn}}$ " in Equation 6-2.
RNN - The " $\mathrm{K}_{\mathrm{nn}}$ " in Equation 6-4.
A - Atomic mass number for the element.
T - The nuclear transparency of the element.
IGO1 - Control Number: If IGO1 = 1, other elements to follow. If $\mathrm{IGO1}=2$, no other elements to follow.
$E_{B}$ - Kinetic energy of incident particle.

R1 $-\left(\frac{E_{p}+E_{n}}{E_{B}}\right)$, the ratio of the total cascade energy to the bombarding energy.

R2 $-\left(\frac{E_{n}}{E_{p}}\right)_{p}$, the ratio of total neutron cascade energy to total proton cascade energy due to an incident proton.

R3 $-\left(\frac{E_{n}}{E_{p}}\right)_{n}$, the ratio of total neutron cascade energy to total proton cascade energy due to an incident neutron.

IGO2 - Control Number:
If IGO2 $=1$, more EB's, R1's, R2's, and R3's to follow for this element.

If $\operatorname{IGO} 2=2$, no more data for this element.
The values $K_{x y}, C_{x y}, T, R 1 ; R 2$, and $R 3$ may be obtained from graphs in NR-140; ${ }^{6}$ these graphs are contained in this report for convenience.

| $K_{x y}$ | - Figure 15 |
| :--- | ---: |
| $C_{x y}$ | - Figure 16 |
| $T$ | - Figure 17 |
| R1 | - Figure 18 |
| R2 \& $R 3$ - Figure 19 |  |

INPUT DATA PREPARATION
Card Type 1 - Columns 1-7, CPP;
Columns 8-14, CNP;
Columns 15-21, CPN;
Columns 22-28, CNN;
Columns 29-35, RPP;
Columns 36-42, RNP;
Columns 43-49, RPN;

FIGURE 15 K AS FUNCTION OF MATERIAL (Z)


FIGURE 16 C VS K REQUIRED TO GIVE $\overline{\mathrm{E}} / \mathrm{E}_{\mathrm{B}}=0.22 \mathrm{AND} 0.17 \mathrm{FOR} \mathrm{E}_{\mathrm{B}}=460 \mathrm{MEV}$


FIGURE 17 NUCLEAR TRANSPARENCIES FOR PROTON BOMBARDMENTS VS MATERIAL (Z)

FIGURE 18 ENERGY DEPENDENCE OF SECONDARY PROTONS ( $\mathrm{E}_{\mathrm{p}}$ ) AND NEUTRONS ( $\mathrm{E}_{\mathrm{n}}$ ) UPON BOMBARDING ENERGY ( $\mathrm{E}_{\mathrm{B}}$ ) FOR MATERIALS ( Z )

FIGURE 19 ENERGY RATIO OF CASCADE NEUTRONS ( $\mathrm{E}_{\mathrm{n}}$ ) TO CASCADE PROTONS ( $\mathrm{E}_{\mathrm{p}}$ ) AS FUNCTION OF MATERIAL (Z)

Columns 50-56, RNN;
Columns 57-63, A;
Columns 64-70, T;
Columns 71, IGO1.
Card Type 2 - Columns 1-8, EB;
Columns 9-16, R1;
Columns 17-24, R2;
Columns 25-32, R3;
Column 33, IGO2.
Note: Each card type 1 indicates an element for which the cascade constants are to be calculated. Following each card type 1, there should be cards type 2 - one for each bombarding energy to be considered.

## OUTPUT FORMAT

The output from the NCON contains, in the heading, input information such as the atomic mass number, $A$, and the nuclear transparency, $T$, of the element and the constants, $C$ and $K$, for $p-p, n-p, p-n$, and $n-n$ reactions.

The main body of the output contains nine columns of information. The first column lists the kinetic energies, EB, of the incident partiole in units of Mev . The second column lists the ratios, ( $\mathrm{EP}+\mathrm{EN}$ )/EB, of the total kinetic energy, of cascade protons plus the cascade neutron, to the kinetic energy of cascade protons for proton bombardment. The fourth column lists the ratios, (EN/EP)N, of the total kinetic energy of cascade neutrons to the total kinetic energy of cascade protons for neutron bombardment. The fifth column lists the G values necessary to give the proper total kinetic energy for a secondary nucleon from a p-p reaction. The sixth column lists the $G$ values necessary to give the proper total kinetic energy of a secondary nucleon from an $n-p$ reaction. The seventh column lists the $G$ values necessary to give the proper total kinetic energy of secondary nucleon from a $p-n$ reaction. The eighth column lists the $G$ values necessary to give the proper total kinetic energy of a secondary nucleon from an $n-n$ reaction. The ninth column lists the removal cross sections, TC, for the element as a function of the kinetic energy of the incident particle.

## 7. RANGE AND STOPPING POWER CALCULATOR (LRSPC)

## CODE DESCRIPTION

The Lockheed Range and Stopping Power Calculator (LRSPC) is a computer code designed to estimate the energy loss, due to ionization and excitation, of charged particles passing through matter. This energy loss (i.e., stopping power) is calculated as a function of kinetic energy for charged particles penetrating materials composed of ten or less elements. Appropriate correction factors are introduced in the stopping power calculation to account for the "density effect", the "shell effect" and the "physical state effect". Protons with kinetic energies ranging from 2 Mev to 100 Gev are considered in the calculations.

The range of protons in matter is given by:

$$
\begin{equation*}
R(E)=R(2 \mathrm{Mev})+\int_{E(2 \mathrm{Mev})}^{E} \frac{\mathrm{dE}}{\mathrm{SP}(E)} \tag{7-1}
\end{equation*}
$$

where $\quad R(E)$ is the range of a proton with kinetic energy ( E );
$R(2 \mathrm{Mev})$ is the experimentally determined range of protons with kinetic energy of 2 Mev ;
$S P(E)$ is calculated stopping power of protons with kinetic energy ( $E$ ).
The stopping power, $\operatorname{SP}(\mathrm{E})$, is calculated from the Bethe-Bloch formula.

$$
\begin{equation*}
\operatorname{SP}(E)=-\left(\frac{\mathrm{dE}}{\mathrm{dx}}\right)\left(\frac{1}{\rho_{\mathrm{t}}}\right)=\frac{2 \mathrm{Ne}^{4}}{\mathrm{mc}^{2} \beta^{2}} \sum \frac{\mathrm{Z}_{\mathrm{k}} \rho_{\mathrm{k}}}{\mathrm{~A}_{\mathrm{k}} \rho_{\mathrm{t}}} \text { (BRAK) } \tag{7-2}
\end{equation*}
$$

where $-(\mathrm{dE} / \mathrm{dx})$ is the proton energy loss rate due to ionization in the material; $\rho_{\mathrm{t}}$ is the density of the stopping material in units of $\mathrm{gm} / \mathrm{cm}^{3} ; \mathrm{N}$ is Avogadro's number in units of atoms/mole; e is the electronic charge in units of (Mev-cm) ${ }^{1 / 2} ; \mathrm{mc}^{2}$ is the electron rest mass in units of Mev; $\beta$ is the ratio of the velocity of the incident proton to the velocity of light; $\mathrm{Z}_{\mathrm{k}}$ is the atomic number of the $\mathrm{k}^{\text {th }}$ element of the stopping material; $\rho_{\mathrm{k}}$ is the partial density of the $k^{\text {th }}$ element of the stopping material in units of $\mathrm{gm} / \mathrm{cm}^{3} ; \mathrm{A}_{\mathrm{k}}$ is
the atomic weight of the $\mathrm{k}^{\text {th }}$ element of the stopping material; and BRAK is a term of convenience defined below.

$$
\begin{equation*}
\operatorname{BRAK}=\ln \left[\frac{2 \mathrm{mc}^{2} \beta^{2}}{\mathrm{I}^{2}\left(1-\beta^{2}\right)} \mathrm{W}_{\max }\right]-2 \beta^{2}-\mathrm{U}-\delta \tag{7-3}
\end{equation*}
$$

where $I$ is the mean ionization potential of the stopping material in units of Mev; U is the "shell effect" correction term; $\delta$ is the "density effect" correction term; and $\mathrm{W}_{\text {max }}$ is maximum energy transfer from the incident proton to an atomic electron. $W_{\max }$ is defined by:

$$
\begin{equation*}
\mathrm{W}_{\max }=\frac{\mathrm{E}_{\mathrm{t}}^{2}-\mu^{2} \mathrm{c}^{4}}{\mu \mathrm{c}^{2}\left[(\mu / 2 \mathrm{~m})+(\mathrm{m} / 2 \mu)+\left(E_{\mathrm{t}} / \mu \mathrm{c}^{2}\right)\right]} \tag{7-4}
\end{equation*}
$$

where $E_{t}$ is the total energy of the incident proton; $\mu$ is the rest mass of the incident proton; $c$ is the speed of light; and $m$ is the rest mass of the electron.

The mean ionization potential, $I$, is given by:

$$
\begin{equation*}
I=\operatorname{Exp}\left[\frac{\sum_{k}\left(Z_{k} \rho_{k} / A_{k}\right) \ln I_{k}}{\sum_{k}\left(Z_{k} \rho_{k} / A_{k}\right)}\right] \tag{7-5}
\end{equation*}
$$

where $I_{k}$ is the mean ionization potential of the $k^{t h}$ element in the stopping material.

The "shell effect" correction term (U) is introduced to prevent an overestimation of the stopping power of a material when the velocity of the incident charged particle is not much greater than the velocity of the inner electrons of the elements present.

$$
\begin{equation*}
\mathrm{U}=2 \mathrm{C}_{\mathrm{K}} / \mathrm{Z}+2 \mathrm{C}_{\mathrm{L}} / \mathrm{Z} \tag{7-6}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{K}}$ is the correction term for the ineffectiveness of the K shell electrons; Z is the atomic number of the stopping material; $\mathrm{C}_{\mathrm{L}}$ is the correction term for the ineffectiveness of the $L$ shell electrons.

The stopping number $\left(\mathrm{B}_{\mathrm{i}}\right)$ for any atomic shell when $\eta_{\mathrm{i}}$ is large is,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, \eta_{\mathrm{i}}\right)=\mathrm{S}_{\mathrm{i}}\left(\theta_{\mathrm{i}}\right) \ln \eta_{\mathrm{i}}+\mathrm{T}_{\mathrm{i}}\left(\theta_{\mathrm{i}}\right)-\mathrm{C}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, \eta_{\mathrm{i}}\right) \tag{7-7}
\end{equation*}
$$

where i indicates the atomic electron shell ( $\mathrm{K}, \mathrm{L},$. . . etc.); $\theta_{\mathrm{i}}$ is the ratio of the observed binding energy of the $i$ th atomic electron shell to the "ideal" ionization potential, which ignores screening by the outer electron shells; $\eta_{\mathrm{i}}$ is proportional to the energy of the incident particle divided by the "ideal" ionization potential; $S_{i}$ is an $\eta_{i}$ dependent term and $T_{i}$ is an $\eta_{i}$ independent term when the electrons of the $i^{\text {th }}$ shell are considered motionless; and $\mathrm{C}_{\mathrm{i}}$ is the correction term for the $\mathrm{i}^{\text {th }}$ shell electrons in motion. The stopping number, $B$, for a material is determined by the sum of the stopping numbers of each shell from all elements present.

$$
\begin{equation*}
B=\sum_{j=1}^{M} \sum_{i=1}^{N_{j}} B_{i j}\left(\theta_{i}, \eta_{i}\right) \tag{7-8}
\end{equation*}
$$

where $B_{i j}$ is the stopping number for the $i^{\text {th }}$ shell of the $j^{\text {th }}$ atom; $N_{j}$ is the number of electron shells inthe $j^{\text {th }}$ atom; and $M$ is the number of elements in the material.

To determine the stopping number ( $\mathrm{B}_{\mathrm{K}}$ ) of the K shell electrons, the expressions for $\theta_{\mathrm{K}}$ and $\eta_{\mathrm{K}}$ are

$$
\begin{equation*}
\theta_{K}=\frac{I_{K}}{\left(\frac{\mathrm{mc}^{2}}{2 \mathrm{n}^{2}}\right)\left(\frac{\mathrm{Z}-0.3}{137.0372}\right)^{2}} \tag{7-9}
\end{equation*}
$$

where $\mathrm{I}_{\mathrm{K}}$ is the observed binding energy of the K shell, n is the principal quantum number ( 1 ) of the K shell, and ( $\mathrm{Z}-0.3$ )/137.0372 is the non-relativistic "ideal" ionization potential, of the K shell, times the fine structure constant and ignores screening by all but the other K electron, and

$$
\begin{equation*}
\eta_{\mathrm{K}}=\beta^{2} /\left[\left(\frac{1}{\mathrm{n}^{2}}\right)\left(\frac{\mathrm{Z}-0.3}{137.0372}\right)^{2}\right] \tag{7-10}
\end{equation*}
$$

To determine the stopping number ( $\mathrm{B}_{\mathrm{L}}$ ) of the L shell electrons, the expressions for $\theta_{\mathrm{L}}$, which is the weighted average of the energy states of the $L$ level, and $\eta_{L}$ are

$$
\begin{equation*}
\left.\theta_{\mathrm{L}}=\frac{2\left(\theta_{\mathrm{L} 1}\right)\left(\mathrm{HOF}_{\mathrm{L} 1}\right)+3\left(\theta_{\mathrm{L} 2}+\theta_{\mathrm{L} 3}\right)(\mathrm{HOF}}{\mathrm{L} 2}\right) \tag{7-11}
\end{equation*}
$$

where $\theta_{\mathrm{L} 1}, \theta_{\mathrm{L} 2}$, and $\theta_{\mathrm{L} 3}$ correspond to the three relativistic energy states in the L electron shell,

$$
\begin{align*}
& \theta_{\mathrm{L} 1}=\frac{\mathrm{I}_{\mathrm{L} 1}}{\left(\frac{\mathrm{mc}^{2}}{2 \mathrm{n}^{2}}\right)\left(\frac{\mathrm{Z}-4.15}{137.0372}\right)^{2}}-\frac{5}{16}\left(\frac{\mathrm{Z}-4.15}{137.0372}\right)^{2} \\
& \theta_{\mathrm{L} 2}=\frac{\mathrm{I}_{\mathrm{L} 2}}{\left(\frac{\mathrm{mc}^{2}}{2 \mathrm{n}^{2}}\right)\left(\frac{\mathrm{Z}-4.15}{137.0372}\right)^{2}}-\frac{5}{16}\left(\frac{\mathrm{Z}-4.15}{137.0372}\right)^{2}  \tag{7-12}\\
& \theta_{L 3}=\frac{\mathrm{I}_{\mathrm{L} 3}}{\left(\frac{\mathrm{mc}^{2}}{2 \mathrm{n}^{2}}\right)\left(\frac{\mathrm{Z}-4.15}{137.0372}\right)^{2}}-\frac{1}{16}\left(\frac{\mathrm{Z}-4.15}{137.0372}\right)^{2}
\end{align*}
$$

$\mathrm{I}_{\mathrm{L} 1}, \mathrm{I}_{\mathrm{L} 2}$, and $\mathrm{I}_{\mathrm{L} 3}$ are the observed binding energies of the L shell electrons, $n$ is the principal quantum number (2) of the $L$ shell, and $(\mathrm{Z}-4.15) / 137.0372$ is the non-relativistic "ideal" ionization potential of L shell times the fine structure constant. $\mathrm{HOF}_{\mathrm{L} 1}$ is the Hönl ${ }^{24}$ oscillator strength for the 2 s electron states of the L shell, and $\mathrm{HOF}_{\mathrm{L} 2}$ is the Hönl oscillator strength for the 2 p electron states of the $L$ shell.

Values of $\eta_{\mathrm{K}}$ are calculated using Equation 7-10, and values of $\theta_{\mathrm{K}}$ are calculated using Equation 7-9. Values of the stopping number, $\mathrm{B}_{\mathrm{K}}\left(\theta_{\mathrm{K}}, \eta_{\mathrm{K}}\right)$, are determined graphically from data presentations of Brown ${ }^{9}$ and Walske ${ }^{47}$. This method is used to determine the stopping number when $\eta_{\mathrm{K}}$ is small. A plot of the $\mathrm{C}_{\mathrm{K}}\left(\theta_{\mathrm{K}}, \eta_{\mathrm{K}}\right)$ versus $1 / \eta_{\mathrm{K}}$ by Walske ${ }^{47}$ is used to determine the $\mathrm{C}_{\mathrm{K}}$ correction term to the K electron shell stopping number for small values of $\eta_{\mathrm{K}}$. Three point interpolation in $\theta_{\mathrm{K}}$ is used to get the proper value of $\mathrm{B}_{\mathrm{K}}$ and $\mathrm{C}_{\mathrm{K}}$ from these graphs and tables for the $\eta_{\mathrm{K}}$ of the incident proton. For large values of $\eta_{K}$, the asymptotic formulas for $B_{K}\left(\theta_{K}, \eta_{K}\right)$ of the $K$ shell electrons given by Walske ${ }^{47}$ are used,

$$
\begin{align*}
& \mathrm{B}_{\mathrm{K}}\left(0.7, \eta_{\mathrm{K}}\right)=1.8133 \ln \eta_{\mathrm{K}}+2.4603-2.0662 \eta_{\mathrm{K}}^{-1}-7.3246 \eta_{\mathrm{K}}^{-2}+45 \eta_{\mathrm{K}}^{-3} \\
& \mathrm{~B}_{\mathrm{K}}\left(0.75, \eta_{\mathrm{K}}\right)=1.7223 \ln \eta_{\mathrm{K}}+2.4044-2.0999 \eta_{\mathrm{K}}^{-1}-7.3194 \eta_{\mathrm{K}}^{-2}+45 \eta_{\mathrm{K}}^{-3} \\
& \mathrm{~B}_{\mathrm{K}}\left(0.8, \eta_{\mathrm{K}}\right)=1.6457 \ln \eta_{\mathrm{K}}+2.3462-2.1196 \eta_{\mathrm{K}}^{-1}-7.3191 \eta_{\mathrm{K}}^{-2}+45 \eta_{\mathrm{K}}^{-3} \\
& \mathrm{~B}_{\mathrm{K}}\left(0.85, \eta_{\mathrm{K}}\right)=1.5807 \ln \eta_{\mathrm{K}}+2.2868-2.1290 \eta_{\mathrm{K}}^{-1}-7.3218 \eta_{\mathrm{K}}^{-2}+45 \eta_{\mathrm{K}}^{-3} \\
& \mathrm{~B}_{\mathrm{K}}\left(0.9, \eta_{\mathrm{K}}\right)=1.5250 \ln \eta_{\mathrm{K}}+2.2273-2.1309 \eta_{\mathrm{K}}^{-1}-7.3263 \eta_{\mathrm{K}}^{-2}+45 \eta_{\mathrm{K}}^{-3} \tag{7-13}
\end{align*}
$$

where $C_{K}\left(\theta_{K}, \eta_{K}\right)$ to order $\eta_{\mathrm{K}}^{-3}$ is the negative of the last three terms of the asyptotic formulas.

Values of $\eta_{L}$, as a function of the kinetic energy of the incident protons, and $\theta_{L}$, as a function of the stopping material, are calculated, and a plot of the values of $\mathrm{B}_{\mathrm{L}}$ versus $\eta_{\mathrm{L}}$ for $\theta_{\mathrm{L}}=0.35,0.45,0.55,0.65$ and for $0 \leq \eta_{\mathrm{L}} \leq 2$ and a table of the values of $\mathrm{B}_{\mathrm{L}}\left(\theta_{\mathrm{L}}, \eta_{\mathrm{L}}\right)$ for $\theta_{\mathrm{L}}=0.35,0.45,0.55,0.65$ and for $1.0 \leq \eta_{\mathrm{L}} \leq 3.5$ by Walske 48 are used to determine the stopping number of materials for lower values of $\eta_{L^{\cdot}}$. For large values of $\eta_{L}$, the asymptotic formulas for $\mathrm{B}_{\mathrm{L}}\left(\theta_{\mathrm{L}}, \eta_{\mathrm{L}}\right)$ of the L shell electrons given by Walske ${ }^{48}$ are used.

$$
\begin{array}{r}
\mathrm{B}_{\mathrm{L}}\left(0.35, \eta_{\mathrm{L}}\right)=10.0371 \ln \eta_{\mathrm{L}}+28.1449-1.5032 \eta_{\mathrm{L}}^{-1} \\
-1.543 \eta_{\mathrm{L}}^{-2}+4.0 \eta_{\mathrm{L}}^{-3}-4.43 \eta_{\mathrm{L}}^{-4} \\
\mathrm{~B}_{\mathrm{L}}\left(0.45, \eta_{\mathrm{L}}\right)= \\
\\
-1.9116 \ln \eta_{\mathrm{L}}+24.4501-1.8756 \eta_{\mathrm{L}}^{-1} \\
\eta_{\mathrm{L}}^{-2}+4.0 \eta_{\mathrm{L}}^{-3}-4.43 \eta_{\mathrm{L}}^{-4} \\
\mathrm{~B}_{\mathrm{L}}\left(0.55, \eta_{\mathrm{L}}\right)= \\
6.7451 \ln \eta_{\mathrm{L}}+21.9061-1.9890 \eta_{\mathrm{L}}^{-1} \\
-1.498 \eta_{\mathrm{L}}^{-2}+4.0 \eta_{\mathrm{L}}^{-3}-4.43 \eta_{\mathrm{L}}^{-4}
\end{array}
$$

(Equation 7-14 continued)

$$
\begin{array}{r}
\mathrm{B}_{\mathrm{L}}\left(0.65, \eta_{\mathrm{L}}\right)=6.0345 \ln \eta_{\mathrm{L}}+20.0154-2.0040 \eta_{\mathrm{L}}^{-1} \\
-1.500 \eta_{\mathrm{L}}^{-2}+4.0 \eta_{\mathrm{L}}^{-3}-4.43 \eta_{\mathrm{L}}^{-4}
\end{array}
$$

where $C_{L}\left(\theta_{L}, \eta_{L}\right)$ to order $\eta_{L}^{-4}$ is the negative of the last four terms of the asymptotic formulas.

The "density effect" is the reduction in the ionization loss of a charged particle due to polarization of the stopping media. The density effect correction term to be applied to the Bethe-Bloch formula is directly dependent on the value of the mean ionization potential of the stopping media and is calculated by a method similar to that of Sternheimer. $40,41,42$ It differs chiefly in the large number of electron shells considered. 23

$$
\begin{equation*}
\Delta\left(-\frac{d E}{d x}\right)=\frac{2 \pi n e^{4}}{2}(-\delta) \tag{7-15}
\end{equation*}
$$

where $\mathrm{dE} / \mathrm{dx}$ is the energy loss rate, n is the number of electrons per cubic centimeter in the stopping material, $e$ is the electron charge, $m$ is the electron mass, $v$ is the velocity of the incident particle ( $\mathrm{v}=\beta \mathrm{c}$ ), and $\delta$ is the density effect correction term.

The density effect correction term $\delta$ is given by:

$$
\begin{equation*}
\delta=\left\{\sum_{i, k} f_{i k} \ln \left[\left(1_{i k}^{2}+1^{2}\right) / l_{i k}^{2}\right]-1^{2}\left(1-\beta^{2}\right)\right\} \tag{7-16}
\end{equation*}
$$

where 1 is the solution of

$$
\begin{equation*}
\frac{1}{\beta^{2}}-1=\sum_{i, k} \frac{f_{i k}}{\bar{\nu}_{i k}^{2}+1^{2}} \tag{7-17}
\end{equation*}
$$

and $l_{i, k}$ is given by

$$
\begin{equation*}
l_{i k}=\left(\bar{\nu}_{i k}^{2}+f_{i k}\right)^{1 / 2} \tag{7-18}
\end{equation*}
$$

Here, $f_{i k}$ is the oscillator strength of the $i^{\text {th }}$ transition in the $k^{\text {th }}$ element. Its value is given by the ratio of the number of electrons in the $i^{\text {th }}$ subshell to the atomic number. The term $\bar{\nu}_{\mathrm{ik}}$ is the effective oscillator frequency of the $i^{\text {th }}$ shell electrons of the $\mathrm{k}^{\text {th }}$ element in units of the plasma frequency $\nu_{\mathrm{p}}$.

$$
\begin{equation*}
\bar{\nu}_{\mathrm{ik}}=\left(\frac{\nu_{\mathrm{ik}}}{\nu_{\mathrm{p}}} \mathrm{G}_{\mathrm{k}}\right) \tag{7-19}
\end{equation*}
$$

The $\nu_{i k}$ is $i^{\text {th }}$ transition frequency for the $\mathrm{k}^{\text {th }}$ element. The plasma frequency of the mixture is given by

$$
\begin{align*}
h \nu_{p} & =h\left(n e^{2} / \pi \mathrm{m}\right)^{1 / 2} \\
& =28.8203 \times 10^{-6}\left[\sum_{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{k}} \rho_{\mathrm{k}} / \mathrm{A}_{\mathrm{k}}\right)\right]^{1 / 2} \tag{7-20}
\end{align*}
$$

The symbol $\mathrm{G}_{\mathrm{k}}$ represents a correction term due to the fact that transitions are made into the continum. It is evaluated by normalizing the calculated ionization potential to the experimental effective ionization potential, $\mathrm{I}_{\mathrm{k}}$, for the $\mathrm{k}^{\text {th }}$ element. For nonconductors, the value of $\mathrm{G}_{\mathrm{k}}$ is:

$$
\begin{equation*}
G_{k}=\operatorname{Exp}\left[\frac{\ln I_{k}-\sum_{i=1}^{j} f_{i k} \ln \left(h \nu_{i k}\right)}{\sum_{i=1}^{j} f_{i k}}\right] \quad i \leq j \tag{7-21}
\end{equation*}
$$

For metals, the value of $\mathrm{G}_{\mathrm{k}}$ is:

$$
\begin{equation*}
G_{k}=\operatorname{Exp}\left\{\frac{\ln I_{k}-f_{j k} \ln h \nu_{p}\left(f_{j k}\right)^{1 / 2}-\sum_{i=1}^{j-1} f_{i k} \ln \left(h \nu_{i k}\right)}{\sum_{i=1}^{j-1} f_{i k}}\right\} \tag{7-22}
\end{equation*}
$$

where $i$ is the number of subshells, $j$ is the oscillator number of the conduction electrons, and k is the element number.

A third correction is needed if the mean ionization potential is measured for a material in a solid or liquid physical state, and the stopping power is desired for the gaseous state or vice versa. ${ }^{49}$

$$
\begin{equation*}
I_{k}^{\text {gas }}=I_{k}^{\text {condensed }} e^{D_{k} / 2} \tag{7-23}
\end{equation*}
$$

For metals the $D_{k}$ term is

$$
\begin{equation*}
D_{k}=\sum_{i=1}^{j-1} f_{i k} \ln \left(1+f_{i k} / \bar{v}_{i k}^{2}\right)+2 f_{j k} \ln \left[h \nu_{p}\left(f_{j k}\right)^{1 / 2} / E_{j k}\right] \tag{7-24}
\end{equation*}
$$

where $E_{j k}$ is the optical transition energy of electrons in a gas. For nonconductors the $D_{k}$ term is

$$
\begin{equation*}
D_{k}=\sum_{i=1}^{j} f_{i k} \ln \left(1+f_{i k} / \bar{\nu}_{i k}^{2}\right) \tag{7-25}
\end{equation*}
$$

## GLOSSARY OF INPUT DATA TERMS

NEB - Number of fine mesh energy points.
EMIN - Minimum energy of mesh.
$\operatorname{EBR}(\mathrm{I})$ - Major energy break points in fine mesh.
DE (I) - Step size of fine mesh between major energy break points.
NS - Number of subshells per element.
$\operatorname{HNU}(\mathrm{J}, \mathrm{I})$ - Observed binding energy of the atomic electrons in each subshell in units of Mev , for the $\mathrm{j}^{\text {th }}$ element and $\mathrm{i}^{\text {th }}$ subshell.

EJ(J) - Principal quantum number of the outer shell electrons for the $\mathrm{j}^{\text {th }}$ element.

II(J, I) - Number of electrons in the $\mathrm{i}^{\text {th }}$ subshell of the $\mathrm{j}^{\text {th }}$ element.

NBK - Number of entries in the K shell electron stopping number table per $\theta_{K}$

EBK(I) - Energy dependent variable, $\eta_{K}=\frac{\beta^{2}}{\left(\frac{Z-0.3}{137.0372}\right)^{2}}$
BK(J, I) - Stopping number of K -shell electrons for $\eta_{\mathrm{K}} \leq 10$. $\mathrm{BK}(1, \mathrm{I})$ - value of stopping number when $\theta_{\mathrm{K}}$ is 0.7 ;
$\mathrm{BK}(2, \mathrm{I})$ - value of stopping number when $\theta_{\mathrm{K}}$ is 0.8 ;
$\mathrm{BK}(3, \mathrm{I})$ - value of stopping number when $\theta_{\mathrm{K}}$ is 0.9 .
Where $\theta_{\mathrm{K}}$ is the energy difference between a K-electron in the ground state and the lowest unoccupied state in units of $Z_{K e f f}^{2} \quad R_{H}, R_{H}$ is the ionization potential of hydrogen.

NBL - Number of entries in the $L$ electron stopping number table per $\theta_{\mathrm{L}}$.

EBL(I) - Energy dependent variable, $\eta_{L}=\frac{4 \beta^{2}}{\left(\frac{\mathrm{Z}-4.15}{137.0372}\right)^{2}}$
$\mathrm{BL}(\mathrm{J}, \mathrm{I})$ - Stopping number of L-electrons when $\eta_{\mathrm{L}} \leq 3.5$. $B L(1, I)$ - value of stopping number when $\theta_{L}=0.35$;
$B L(2, I)$ - value of stopping number when $\theta_{L}=0.45$;
$B L(3, I)$ - value of stopping number when $\theta_{L}=0.55$;
$\mathrm{BL}(4, \mathrm{I})$ - value of stopping number when $\theta_{\mathrm{L}}=0.65$;
where $\theta_{\mathrm{L}}$ is the observed energy difference between an L electron in the ground state and the lowest unoccupied state in units of $Z{ }_{\text {Leff }} R_{H}$.

ZZ(I) - Atomic number of elements in the Hönl weighting function table for L-shell electrons.

OZ1(I) - Hönl weighting function to correct for relativistic effects in the 2 s electron energy states.

OZ2(I) - Hönl weighting function to correct for relativistic effects in the $2 p$ electron energy states.
$\mathrm{ZR}(\mathrm{I}) \quad$ - Atomic numbers of elements in the initial value table for range of particles at 2 Mev .

TPOR(I) - Initial values for range of particles at 2 Mev .
FIZ(I) - Atomic numbers of elements in the table of ionization potentials.
FIZP(I) - Values of experimentally determined ionization potential in units of ev .

NES - Total number of energy mesh points for punched card output.
ES(I) - Energy mesh points for punched card output.
KMAX - Number of elements present in material, KMAX $\leq 10$.
I2 - State of final material; $\mathrm{I} 2=1$ (metal), $\mathrm{I} 2=2$ (condensed nonconductor), $12=3$ (gas).

I1K(I) - State of element when I/Z was measured; I1K = 1 (metal), $\mathrm{I} 1 \mathrm{~K}=2$ (condensed nonconductor), $\mathrm{I} 1 \mathrm{~K}=3$ (gas).
$\mathrm{Z}(\mathrm{I}) \quad$ - Atomic number of the element.
AW(I) - Atomic weight of the element.
FIP(I) - Ionization potential of the element in units of ev.
RHO(I) - Density of the element in units of $\mathrm{gm} / \mathrm{cm}^{3}$.
UAR(I) - Correction factor to the L-shell term.

## INPUT DATA PREPARATION

Card type 1 through card type 8A are placed on Tape B6.
Card Type 1 - Columns 7-10 contain the number of occupied subshells per element (NS). Columns 11-70 contain six fields of ten
columns per field of values of the electron binding energy per subshell per element (HNU).

Card Type 1A - Continuation card contains six fields of ten columns per field of values of HNU beginning in Column 11

FORMAT (6xI4, 6E10./(10X6E10.))
Card Type 2 - Columns 1-10 contain the principal quantum number of the outer subshell electron per element (EJ). Columns 11-70 contain a maximum of thirty fields of two columns per field of the number of electrons in the occupied subshells per element (II).

FORMAT (EI0. , 30I2)
Card Type 3 - Contains nine fields of eight columns per field of energy mesh points ( E ).

FORMAT (9E8.)
Card Type 4 - Columns 1 and 2 contain the number of Eta $K$ entries (NBK) in the stopping number table for $K$ electrons.

Card Type 4A - Contains four fields of ten columns per field. Columns 1-10 contain the value of Eta K (EBK), Columns 11-40 contain the values of the stopping number of $K$ electrons (BK); Columns 11-20, value of BK when Theta $K$ is 0.7 , Columns $21-30$, value of $B K$ when Theta $K$ is 0.8 , Columns $31-40$, value of $B K$ when Theta $K$ is 0.9 .

FORMAT (I2/(4E10.))
Card Type 5 - Columns 1 and 2 contain the number of Eta $L$ entries (NBL) in the stopping number table for $L$ electrons.

Card Type 5A - Contains five fields of ten columns per field. Columns 1-10 contain the value of Eta L (EBL); columns 11-50 contain values of the stopping number for $L$ electrons ( $B L$ ); columns $11-20$, value of $B L$ when Theta $L$ is 0.35 ; columns 21-30, value of BL when Theta $L$ is 0.45 ; columns $31-40$, value of BL when Theta $L$ is 0.55 ; columns 41-50, value of BL when Theta L is 0.65 .

FORMAT (I2/(5E10.))

Card Type 6 - Contains three fields of ten columns per field. Columns $1-10$ contain the atomic number of the element composing the table, ( ZZ ); columns 11-20 contain the Hönl weighting functionfor the 2 s state L electrons ( OZ 1 ); and columns 21-30 contain the Hönl weighting function for the 2 p state L electrons (OZ2).

FORMAT (3E10.).
Card Type 7 - Contains nine fields of eight columns per field. Columns $1-8,17-24,33-40,49-56$, and $65-72$ contain the atomic number of the elements ( ZR ) composing the initial range table while columns $9-16,25-32,41-48$, and $57-64$ contain the initial range values (TPOR) for 2 Mev protons.

Card Type 7A - Continuation card - contains nine fields of eight columns per field. Columns 1-8, 17-24, 33-40, 49-56, and 65-72 contain the initial range values (TPOR) for 2 Mev protons while columns 9-16, 25-32, 41-48, and 57-64 contain the atomic number of the elements (ZR) composing the initial range table.

FORMAT (9E8.)
Note: Initial values for range of 2 Mev protons are described by card type 7, card type 7A, and card type 7, card type 7A, etc., until all atomic numbers and their accompanying initial range values are read in.

Card Type 8 - Contains nine fields of eight columns per field. Columns $1-8,17-24,33-40,49-56$, and 65-72 contain the atomic number of the elements (FIZ) composing the table of experimentally determined ionization potentials while columns $9-16,25-32,41-48$, and 57-64 contain the values of the experimentally determined ionization potentials (FIZP).

Card Type 8A - Continuation card - contains nine fields of eight columns per field. Columns 1-8, 17-24, 33-40, 49-56, and 65-72 contain the values of the ionization potential (FIZP) while columns 9-16, 25-32, 41-48, and 57-64 contain the atomic numbers (FIZ) of the elements composing the ionization potential table.

FORMAT (9E8.)

Note: Experimentally determined ionization potential values for elements are described by card type 8 , card type 8 A , card type 8 , card type 8 A , etc., until all atomic numbers and their accompanying experimental ionization potentials are read in.

Note: Card type 9 and card type 9A follow the asterisk data card which is directly behind the binary program cards.

Card Type 9 - Columns 1-5 contain the number of fine mesh energy points (NEB). Columns 6-15 contain the minimum energy of mesh (EMIN).

Card Type 9A - Continuation card - contains eight fields of nine columns per field. Columns 1-9, 19-27, 37-45, and 55-63 contain the major energy break points ( $\mathrm{EBR}(\mathrm{I}$ ) ) while columns 10-18, 28-36, 46-54, and 64-72 contain the step size of the fine mesh between major energy break points (DE(I)) where $\mathrm{I}=1$, NEB.
FORMAT (I5, E10./(8E9.))

Note: The total number of $\operatorname{EBR}(\mathrm{I})$ and $\mathrm{DE}(\mathrm{I})$ entries on cards type 9 A must equal the number in columns 1-5 of card type 9.

Card Type 10 - Columns 1-3 contain the number of energy mesh points (NES) for punched card output.

Card Type 10A - Nine fields of eight columns per field containing the energy values (ES) for the energy mesh point table.

FORMAT (I3/(9E8.))
Note: The total number of energy entries on cards type 10 A must equal the number in columns 1-3 card type 10.

Note: A set of cards composed of card type 11, card type 12, and if necessary card type 13 are input for each case to be evaluated. The sets of cards should equal the number of cases to be evaluated.

Card Type 11 - Case Identification Card - Alphameric identification or labeling of the case being evaluated.

FORMAT (12A6)

Card Type 12 - Three fields of five columns per field followed by five fields of ten columns per field. Columns 1-5 contain the number of elements present in a material (KMAX); columns 6-10 contain the state (I2) of the final material, $1=$ metal, $2=$ condensed nonconductor, $3=$ gas. Columns 11-15 contain the state ( 11 K ), $1=$ metal,$=$ condensed nonconductor, $3=$ gas, of the element at the time its ionization potential was determined. Columns 16-25 contain the atomic number (2) of the element composing the material. Columns 26-35 contain the atomic weight (AW) of the element composing the material. Columns 36-45 contain the ionization potential (FIP) of the element. Columns 46-55 contain the partial density ( RHO ) of the element composing the material, and columns 56-65 contain the L shell correction factor (UAR).

FORMAT (3I5, 5E10.)
Card Type 13 - Continuation card for card type 12-one field of five columns followed by five fields of ten columns per field. Columns 1-10 are left intentionally blank. Columns 11-15 contain the state (IIK) of the element at the time its ionization potential was determined; $1=$ metal, $2=$ condensed nonconductor, $3=$ gas. Columns $16-25$ contain the atomic number ( $Z$ ) of an element composing the material, columns 26-35 contain the atomic weight ( AW ) of an element composing the material. Columns $36-45$ contain the ionization potential (FIP) of an element composing the material and columns 46-55 contain the partial density ( RHO ) of an element composing the material. Columns 56-65 contain the $L$ shell correction factor (UAR).

Note: The ionization potential, FIP, in cards type 12 and 13 may be left blank. In this circumstance, a value for FIP will be determined by interpolation in the FIZP table.

Note: Case input data cards are read in order of one card type 12 and zero to nine cards type 13 until the number of card type 12 and cards type 13 is equal to the number of elements composing the material, KMAX, columns 1-5 on card type 12.

The typical output from the LRSPC consists of a heading containing comments or labeling information and a subheading consisting of the atomic number(s), the atomic weight(s), the ratio(s) of the calculated excitation potential(s) divided by the atomic number(s), the partial densities in units of $\mathrm{gms} / \mathrm{cm}^{3}$, the total ionization potential in units of ev, and total density in units of $\mathrm{gms} / \mathrm{cm}^{3}$ for the element or material being evaluated.

The main body of the output contains eight columns for information. The first column lists the kinetic energies of the incident protons in units of Mev . The second columin lists the valucs of (BRAK), from the Bethe-Bloch formula, which is defined in the LRSPC description. The third column lists the calculated shell correction factors for the K shell electrons. The fourth column lists the calculated shell correction factors for the $L$ shell electrons. The fifth column lists the total "shell effect" correction factor. The sixth column lists the "density effect" correction factors. The seventh column lists the calculated stopping powers in units of $\mathrm{Mev}-\mathrm{cm}^{2}-\mathrm{gm}^{-1}$. The eighth column lists the ranges in units of $\mathrm{gms}-\mathrm{cm}^{-2}$.

## 8. SOURCESPECTRUM CODE (LSSC)

## CODE DESCRIPTION

The Lockheed Source Spectrum Code (LSSC) was written to facilitate preparation of proton input spectra in a format suitable for the Lockheed Proton Penetration Code (LPPC).

Space radiation fluxes reported in the literature are presented in a variety of ways, and the reduction of this data to a common form suitable for comparison and calculation is often tedious. The code is intended to eliminate the laborious manual calculations involved in reducing a given spectrum to a differential number flux versus energy. In practice, the code has been found adequate for converting trapped and solar flare spectra in the energy range of interest to space radiation shielding studies.

The code, LSSC, may be used to convert five types of proton spectral data to differential number flux versus energy. These types are:

Option 1 - Integral number flux versus rigidity.
Option 2 - Integral number flux versus energy.
Option 3 - Differential number flux versus rigidity.
Option 4 - Power law representation of integral number flux versus rigidity.

Option 5 - Power law representation of integral number flux versus energy.

## Option 1

For this option, a table of rigidity values and their corresponding integral number flux values are read into the computer. The rigidities are converted to energies through the relation given by Equation 8-1.

$$
\begin{equation*}
E=\sqrt{(\mathrm{Re})^{2}+938^{2}}-938 \tag{8-1}
\end{equation*}
$$

where E represents kinetic energy in Mev, $R$ represents rigidity in $M v$, and e represents the proton charge $(=1)$.

The data are, after the above conversion, a table of integral number fluxes versus energy and are treated as such by Option 2. The comments under Option 2 relating to optimum choice of input data values, to ensure stability, apply to this option also.

## Option 2

In this option, a table of energy values and their corresponding integral number flux values are read into the computer. The integral number flux versus energy spectrum is assumed to be representable by an analytic power function on the interval $\mathrm{E}_{\mathrm{i}}$ to $\mathrm{E}_{\mathrm{i}+1}$ :

$$
\begin{equation*}
F(E)=\frac{C}{D-1} E^{1-D}, E_{i} \leq E \leq E_{i+1} \tag{8-2}
\end{equation*}
$$

By definition

$$
\begin{equation*}
\frac{\mathrm{dF}(\mathrm{E})}{\mathrm{dE}}=-\mathrm{f}(\mathrm{E}) \tag{8-3}
\end{equation*}
$$

Differentiating Equation 8-2 and substituting into Equation 8-3, one obtains the differential number flux versus energy spectrum,

$$
\begin{equation*}
f(E)=C E^{-D} \tag{8-4}
\end{equation*}
$$

From Equation 8-2

$$
\begin{equation*}
C=(D-1) F(E) / E^{1-D} \tag{8-5}
\end{equation*}
$$

The value of " D " is obtained by evaluating Equation 8-2 at the end points:

$$
\begin{equation*}
D=1-\frac{\ln \left[F\left(E_{i}\right) / F\left(E_{i+1}\right)\right]}{\ln \left(E_{i} / E_{i+1}\right)} \tag{8-6}
\end{equation*}
$$

The differential number flux versus energy spectrum is obtained by substituting Equations 8-5 and 8-6 in Equation 8-4:

$$
\begin{equation*}
f(E)=\frac{F(E)}{E} \cdot \frac{\ln \left[F\left(E_{i}\right) / F\left(E_{i+1}\right)\right]}{\ln \left(E_{i} / E_{i+1}\right)}, E_{i} \leq E \leq E_{i+1} \tag{8-7}
\end{equation*}
$$

The values of $F(E)$ at the output energies are acquired by polynomial interpolation in a table of the logarithm of $E$ and the logarithm of $F(E)$ evaluated at the input energies. Special provisions are made at those energy points where the size of the energy interval changes.

Option 2 occasionally produces small oscillations in the output spectrum but is more satisfactory than a numerical or graphical differentiation scheme. This is especially true when crude graphs of integral fluxes are to be analyzed. If Option 1 or 2 is used, it is suggested that the values of $F(E)$ be replotted and a smooth curve drawn; then 5 to a maximum of 50 points may be read from the graph. The replotted data are not more accurate than the original, but fluctuations caused by errors in reading coarse interval graphs are minimized. The derivative is very sensitive to fluctuations. For this reason, points should be selected so that differences between successive flux and energy (or rigidity) values are large compared to the graph reading error.

## Option 3

In this option, a table of differential number fluxes versus rigidity is read into the computer. Rigidity is transformed to energy according to Equation $8-1$. The differential number flux is transformed as:

$$
\begin{equation*}
f(E)=F(R) \frac{\sqrt{R^{2}+938^{2}}}{R} \tag{8-8}
\end{equation*}
$$

## Option 4

The power law representation of integral number flux versus rigidity is given by Equation 8-9.

$$
\begin{equation*}
F(R)=A R^{-B} \tag{8-9}
\end{equation*}
$$

The differential number flux versus rigidity is obtained from Equation 8-9 and given by

$$
\begin{equation*}
\mathrm{f}(\mathrm{R})=\mathrm{ABR}{ }^{-\mathrm{B}-1} \tag{8-10}
\end{equation*}
$$

The differential number flux versus energy is related to the differential number flux versus rigidity through

$$
\begin{equation*}
f(E)=f(R) \frac{d R}{d E} \tag{8-11}
\end{equation*}
$$

$\mathrm{dR} / \mathrm{dE}$ is obtained from Equation $8-1$ giving

$$
\begin{equation*}
\mathrm{f}(\mathrm{E})=\mathrm{ABR}{ }^{-\mathrm{B}-2} \cdot \sqrt{\mathrm{R}^{2}+938^{2}} \tag{8-12}
\end{equation*}
$$

by substituting Equations 8-10 and 8-1 in Equation 8-11.

The rigidity values at the output energies are determined by solving Equation 8-1 for R,

$$
\begin{equation*}
R=\sqrt{E^{2}+1876 E} \tag{8-13}
\end{equation*}
$$

Option 5
The "power law" representation of integral number flux versus energy is given by

$$
\begin{equation*}
F(E)=A E^{-B} \tag{8-14}
\end{equation*}
$$

The differential number flux versus energy is obtained by substituting Equation 8-14 into Equation 8-3:

$$
\begin{equation*}
f(E)=A B E^{-B-1} \tag{8-15}
\end{equation*}
$$

Equation $8-15$ is evaluated at the output energies to obtain a table of differential number flux versus energy.
With the exception of Option 3, the energy points at which the differential number flux will be output are determined by the nine values:

EMAX - the maximum energy to be considered.
EMIN - the minimum energy to be considered.
EB1 - the upper bound for the first energy range, EMIN to EB1.
EB2 - the upper bound for the second energy range, EB1 to EB2.
EB3 - the upper bound for the third energy range, EB2 to EB3. The fourth energy range is EB3 to EMAX.

DEL1 - the energy step size in the first energy range.
DEL2 - the energy step size in the second energy range.
DEL3 - the energy step size in the third energy range.
DEL4 - the energy step size in the fourth energy range.
The number, NE, of output energy points is given by:

$$
\begin{aligned}
& \mathrm{NE}=(\mathrm{EB} 1-\mathrm{EMIN}) / \mathrm{DEL} 1+(\mathrm{EB} 2-\mathrm{EB} 1) / \mathrm{DEL} 2+(\mathrm{EB} 3-\mathrm{EB} 2) / \mathrm{DEL} 3 \\
&+(\mathrm{EMAX}-\mathrm{EB} 3) / \mathrm{DEL} 4+1
\end{aligned}
$$

Output energy points will be computed until EMAX is reached or 250 points have been computed - whichever occurs first terminates computation of output energy points.

## GLOSSARY OF INPUT DATA TERMS

H - Hollerith information identifying the source spectrum.

NEI - Number of entries in spectrum table.
IPT - Option number
IPT $=1$, integral number flux versus rigidity.
IPT $=2$, integral number flux versus energy.
IPT $=3$, differential number flux versus rigidity.
$\mathrm{IPT}=4$, power law representation of integral number flux versus rigidity.

IPT $=5$, power law representation of integral number flux versus energy.
$R(\mathrm{I}) \quad-$ Rigidity entries in Mv (million volts).
EI(I) - Energy entries in Mev.
FEI(I) - Integral flux values at rigidity, $R(I)$, or energy, $\mathrm{EI}(\mathrm{I})$, points.
PIR(I) - Differential flux values at rigidity points, $\mathrm{R}(\mathrm{I})$.
AA - The coefficient "A" in the integral rigidity power law spectrum, $A R^{-B}$.

BB - The exponent " B " in the integral rigidity power law spectrum.
AA - The coefficient " A " in the integral energy power law spectrum, $A E^{-B}$.

BB - The exponent " B " in the integral energy power law spectrum.

EMAX - Maximum energy for which the differential flux spectrum is to be calculated.

EMIN - Minimum energy for which the differential flux spectrum is to be calculated.

EB1 - Upper limit of first differential flux energy range, from EMIN to EB1.

EB2 - Upper limit of second differential flux energy range, from EB1 to EB2.

EB3 - Upper limit of third differential flux energy range, from EB2 to EB3. The fourth, and last, range runs from EB3 to EMAX.

DEL1 - Energy increment within the first range.
DEL2 - Energy increment within the second range.

DEL3 - Energy increment within the third range.
DEL4 - Energy increment within the fourth range.

## INPUT DATA PREPARATION

Card Type 1-72 columns of Hollerith information available for identification of source spectrum.

FORMAT (12A6)

Card Type 2 - Columns 1-5, the number of entries in the flux table; columns 6-10, the option number.

FORMAT (14I5)

The data contained in card types 3 and 4 depend upon the option number in card type 2.

Card Type 3 - Eight fields of 9 columns per field, each field contains a (Option 1) rigidity value, $R(I)$, in Mv. The number of these entries should equal the number in columns 1-5 of card type 2. FORMAT (8E9.)

Card Type 4 - Eight fields of 9 columns per field, each field contains an (Option 1) integral number flux value corresponding to the rigidity value in card type 3.

FORMAT (8E9.)

Card Type 3 - Eight fields of 9 columns per field, each field contains an (Option 2) energy value, $\mathrm{EI}(\mathrm{I})$, in Mev. The number of these entries should equal the number in columns 1-5 in card type 2.

FORMAT (8E9.)
Card Type 4 - Eight fields of 9 columns per field, each field contains an (Option 2) integral number flux value corresponding to the energy value in card type 3.

FORMAT (8E9.)
Card Type 3 - Eight fields of 9 columns per field, each field contains a (Option 3) rigidity value, $\mathrm{R}(\mathrm{I})$, in Mv. The number of these entries should equal the number in columns 1-5 of card type 2.

FORMAT (8E9.)
Card Type 4 - Eight fields of 9 columns per field, each field contains a (Option 3) differential number flux value corresponding to the rigidity value in card type 3.

FORMAT(8E9.)
Card Type 3-Columns 1-9, the " A " of $\mathrm{AR}^{-\mathrm{B}}$; columns $10-18$, the " B " of
(Option 4) $\quad A R^{-B}$. (This is the integral number flux versus rigidity power law.) There are no cards type 4 for options 4 and 5. FORMAT (8E9.)

Card Type 3-Columns 1-9, the "A" of $\mathrm{AE}^{-\mathrm{B}}$; columns $10-18$, the " B " of (Option 5) $\quad \mathrm{AE}^{-\mathrm{B}}$. (This is the integral number flux versus energy power law.)

FORMAT (8E9.)
Card Type 5-Columns 1-9, EMAX; columns 10-18, EMIN; columns 19-27, EB1; columns 28-36, EB2; columns 37-45, EB3; columns 46-54, DEL1; columns 55-63, DEL2; columns 64-72, DEL3; columns 1-9 (next card), DEL4.

FORMAT (8E9.)
Note: There is no card type 5 for option 3.

## OUTPUT FORMAT

The output information from LSSC, for all five options, is initially the data on the heading card, card type 1 , and the option number.

For options 1 and 2, the input energies and integral fluxes are listed - in the case of option 1 the energies are determined from the input rigidities. Following the input data, the computed energy values, the corresponding differential number fluxes, and the corresponding integral number fluxes are listed.

For options 3, 4, and 5, the output is the same as for options 1 and 2; however, the input data is not listed.

For all five options, the number of computed energy values, the heading from card type 1, the computed energies, and the differential number fluxes are punched on cards.

## 9. ELECTRON BREMSSTRAHLUNG CODE (LEBC)

The Lockheed Electron Bremsstrahlung Code considers photons generated by electrons incident upon a shield material. The photons are attenuated through the remainder of the shield and the resulting dose calculated.

The incident electron flux is assumed to be normal to the surface of the shield. The cross-section, differential in photon energy, for bremsstrahlung production is obtained from formula 3BN in a review article by H. W. Koch and J. W. Motz. ${ }^{41}$ This formula retains validity under the conditions of three inequalities,

$$
\begin{gather*}
137 \mathrm{Z}^{-1 / 3} \gg\left(\mathrm{E}_{\mathrm{o}} \mathrm{E} / \mathrm{k}\right)  \tag{9-1}\\
2 \pi \mathrm{Z} / 137 \beta_{\mathrm{o}} \ll 1  \tag{9-2}\\
2 \pi \mathrm{Z} / 137 \beta \ll 1 \tag{9-3}
\end{gather*}
$$

where $E_{o}=$ total electron energy before collision in $m_{o} c^{2}$ units

$$
E=\text { total electron energy after collision in } m_{0} c^{2} \text { units }
$$

$\mathrm{k}=$ photon energy in $\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}$ units.
Inequality 9-1 implies screening effects are considered negligible; inequalities 9-2 and 9r3 imply that the electron kinetic energy is in the range of validity for the Born approximation. The Born approximation underestimates the true cross section at very low energies and overestimates the true cross section at extreme relativistic energies. The energy region in which the Born approximation is only slightly in error is the range from 4 to 10 Mev . Roughly, the Born approximation is within $10 \%$ above 2 Mev and within a factor of two below 2 Mev . The cross section formula, 3BN, used in LEBC is:

$$
\begin{align*}
\frac{d \sigma\left(k, E_{o}\right)}{d k}= & \frac{z^{2} r_{o}^{2} p}{137 p_{o} k}\left\{\frac{4}{3}-2 E_{o} E\left(\frac{p^{2}+p_{o}^{2}}{p^{2} p_{o}^{2}}\right)+\frac{f_{o} E}{p_{o}^{3}}+\frac{f E_{o}}{p^{2}}-\frac{f_{o}}{p_{o}}+\right. \\
& L\left[\frac{8 E_{o} E}{3 p_{o} p}+k^{2} \frac{\left(E_{o}^{2} E^{2}+p_{o}^{2} p^{2}\right)}{p_{o}^{3} p^{3}}+\right.  \tag{9-4}\\
& \left.\left.\frac{k}{2 p_{o} p}\left(\left(\frac{E_{o} E+p_{o}^{2}}{p_{o}^{3}}\right) f_{o}-\left(\frac{E_{0} E+p^{2}}{p^{3}}\right) f+\frac{2 k E_{o} E}{p^{2} p_{o}^{2}}\right)\right]\right\}
\end{align*}
$$

where

$$
L=2 \ln \left[\frac{E_{0} E+p_{0} p-1}{k}\right]
$$

$$
f_{o}=\ln \left[\frac{E_{0}+p_{o}}{E_{o}-p_{o}}\right]
$$

$$
\mathrm{f}=\ln \left[\frac{\mathrm{E}+\mathrm{p}}{\mathrm{E}-\mathrm{p}}\right]
$$

$$
E_{o}=T_{o}+1
$$

$$
\mathrm{E}=\mathrm{T}+1=\mathrm{E}_{\mathrm{o}}-\mathrm{k}
$$

$$
\mathrm{p}_{\mathrm{o}}=\left[\mathrm{T}_{\mathrm{o}}\left(\mathrm{~T}_{\mathrm{o}}+2\right)\right]^{1 / 2}
$$

$$
\mathrm{p}=[\mathrm{T}(\mathrm{~T}+2)]^{1 / 2}
$$

$\mathrm{E}_{\mathrm{o}}, \mathrm{E}=$ initial and final total energy of the electron in a collision, in $\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}$ units
$T_{o}, T=$ initial and final kinetic energy of the electron in a collision, in $m_{0} c^{2}$ units
$k=$ energy of emitted photon in $m_{o} c^{2}$ units
$\mathrm{z}=$ atomic number of stopping material
$r_{o}=2.82 \times 10^{-13} \mathrm{~cm}$ (classical electron radius).

The photon differential energy flux, $I(k)$, due to an integral number flux of electrons incident normally upon the shield material is given by the relation:

$$
\begin{equation*}
I(k)=\frac{0.511 N_{o} z^{2}}{A} \int_{k+1}^{E_{o, \max }} \frac{k d \sigma\left(k, E_{o}\right)}{z^{2} d k S\left(E_{o}\right)} N\left(E_{o}\right) d E_{o} \tag{9-5}
\end{equation*}
$$

where $\quad N_{0}=$ Avogadro's number

$$
\mathrm{A}, \mathrm{z}=\text { atomic weight and atomic number of stopping material. }
$$

$\frac{d \sigma\left(k, E_{o}\right)}{d k}=\begin{aligned} & \text { bremsstrahlung cross section, differential with respect to } \\ & \text { photon energy, } k \text {, in units of } \mathrm{cm}^{2} / \text { atom per incident }\end{aligned}$ electron
$\mathrm{E}_{\mathrm{o}, \max }=$ maximum total energy of incident electrons, in $\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}$ units $\mathrm{S}\left(\mathrm{E}_{\mathrm{o}}\right)=$ stopping power, 34 in units of $\mathrm{Mev}-\mathrm{cm}^{2} / \mathrm{gm}$, for electrons of total energy, $E_{o}$, in units of $m_{o} c^{2}$
$N\left(E_{o}\right)$$\quad \begin{aligned} & \text { integral number flux of electrons with total energy equal to } \\ & \\ & \text { or greater than } E_{0} .\end{aligned}$ or greater than $E_{0}$.

The numerical constant, 0.511 , converts stopping power in units of $\mathrm{Mev}-\mathrm{cm}^{2} / \mathrm{gm}$ to stopping power in units of $\mathrm{m}_{0} \mathrm{c}^{2}-\mathrm{cm}^{2} / \mathrm{gm}$.

With the photon differential energy flux determined, the bremsstrahlung dose rate emerging from the shield may be calculated.

$$
\begin{equation*}
\mathrm{D}(\mathrm{x})=0.511 \int_{\mathrm{k}_{\min }}^{\mathrm{k} \max } \mathrm{I}(\mathrm{k}) F(\mathrm{E}) \mathrm{e}^{-\mu(\mathrm{k}) \cdot \mathrm{x}} \mathrm{~B}(\mathrm{k}, \mathrm{x}) \mathrm{dk} \tag{9-6}
\end{equation*}
$$

where $\quad F(E)=$ photon energy flux-to-dose conversion factor, 18 ,

$$
\mathrm{r}-\mathrm{cm}^{2}-\mathrm{sec}-\mathrm{hr}^{-1}-\mathrm{Mev}^{-1}
$$

$$
\mu(\mathrm{k})=\text { mass attenuation coefficient, } 20 \mathrm{in}_{\mathrm{cm}}{ }^{2} / \mathrm{gm}
$$

$x=$ normal thickness of shield, in $\mathrm{gm} / \mathrm{cm}^{2}$
$B(k, x)=$ point isotropic source dose build-up factor. ${ }^{19}$
$\mathrm{D}(\mathrm{x})=$ photon dose rate in $\mathrm{r} / \mathrm{hr}$.

The numerical constant, 0.511 , in this equation, is to convert the Mev energy units in the flux-to-dose conversion factor to $\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}$ energy units.

In the bremsstrahlung code, the dose rate integration is actually the sum of two integrations. In the first, the integration is from the minimum photon energy to the K-edge energy; and in the second, the integration is from the K-edge energy to the maximum photon energy. This is done in order not to integrate over the discontinuity generated in the attenuation coefficients at the K-edge.

## GLOSSARY OF INPUT DATA TERMS

H

- Hollerith information identifying calculation.

NMUT - Number of mass attenuation coefficient $(\mu)$ tables.
NST - Number of stopping power tables.
NNT $\quad$ - Number of electron integral flux spectrum tables.
ZSTAR(J) - Atomic number of element of $j^{\text {th }} \mu$-table.
$\operatorname{NKMU}(J) \quad-$ Number of entries in $j^{\text {th }} \mu$-table.
FKMU(J, I) $\quad \mathrm{i}^{\text {th }}$ photon energy (Mev) entry in $\mathrm{j}^{\text {th }} \mu$-table of $\mathrm{j}^{\text {th }}$ element.
FMUII(J, I) $\quad-i^{\text {th }}$ mass attenuation coefficient $\left(\mathrm{cm}^{2} / \mathrm{gm}\right)$ of $\mathrm{j}^{\text {th }}$ element.
WA(I)

- Atomic weight of $i^{\text {th }}$ element (corresponding to $i^{\text {th }}$ $\mu$-table).

Z(I) - Atomic number for element of $i^{\text {th }}$ stopping power table.
NES(I) - Number of entries in stopping power table for $\mathrm{i}^{\text {th }}$ element.
ESI(I, J) $\quad-j^{\text {th }}$ electron energy (Mev) entry for $i^{\text {th }}$ element stopping power table.
$S(\mathrm{I}, \mathrm{J}) \quad$ - Stopping power $\left(\mathrm{Mev}^{1}-\mathrm{gm}^{-1}-\mathrm{cm}^{2}\right)$ entry at $\mathrm{j}^{\text {th }}$ energy for $i^{\text {th }}$ element.

| NFDC | - Number of energy-flux-to-dose conversion factors. |
| :---: | :---: |
| FKDC(I) | - $\mathrm{i}^{\text {th }}$ photon energy (Mev) entry. |
| FDCV(I) | - Energy-flux-to-dose conversion factor ( $\mathrm{r}^{1}-\mathrm{hr}^{-1}-\mathrm{Mev}^{-1}$ -$\mathrm{cm}^{2}-\mathrm{sec}^{1}$ ) entry at $\mathrm{i}^{\text {th }}$ energy. |
| NBEE | - Number of energy entries in the $\mathrm{kk}^{\text {th }}$ buildup table. (Corresponding to the $\mathrm{kk}^{\text {th }} \mu$-table.) |
| NBXX | - Number of mean free path entries in the $\mathrm{kk}^{\text {th }}$ buildup table. |
| BE(JJ, KK) | $-\mathrm{jj}{ }^{\text {th }}$ photon energy (Mev) entry in the $\mathrm{kk}^{\text {th }}$ buildup table. |
| BX(JK, KK) | $-j k^{\text {th }}$ number of mean free paths entry in the $k k^{\text {th }}$ buildup table. |
| BUP(JK, JJ | - Dose buildup factor entry for the $j \mathrm{k}^{\text {th }}$ number of mean free paths at the $\mathrm{jj}^{\text {th }}$ photon energy in the $\mathrm{kk}^{\text {th }}$ element. |
| NTN(I) | - Number of entries in the $i^{\text {th }}$ electron integral flux spectrum table. |
| ETNI(I, J) | - $\mathrm{j}^{\text {th }}$ electron energy (Mev) in $\mathrm{i}^{\text {th }}$ integral flux table. |
| FNII(I, J) | - Electron integral flux entry at $j^{\text {th }}$ energy in $i^{\text {th }}$ electron integral flux table. |
| IOPT | - Integral spectrum option: |
|  | $\begin{aligned} & 1=\text { monoenergetic electron flux } \\ & 2=\text { exponential integral flux }\left[Q(E)=A e^{-E / B}\right] \end{aligned}$ |
|  | $3=$ tabular integral flux. |
| ISHLD | - Shield material number (indicating material loaction in the sequence of $\mu$-tables). |
| ITAR | - Target material number (indicating material location in the sequence of stopping power tables). |

(ITAR determines the material that stops the electrons and generates the photons, ISHLD determines the material that attenuates the photons generated in ITAR.)

INTAB - An integer determining which of the integral flux tables is to be used in the calculation.

IPDR - A print option:
$1=$ print intermediate data before integrating $0=$ omit above printing.

ISTOP - Compute option:
$0=$ compute
1 = stop
$2=$ dump, then stop.
NTH - Number of shield thicknesses.

A

- The " A " of $\mathrm{Ae} \mathrm{e}^{-\mathrm{E} / \mathrm{B}}$ for the exponential integral flux option.

B

- The " B " for the exponential integral flux option.

ENM

BLIMIT - Lower limit (Mev) of integration above the "K-edge".
ULIMIT - Upper limit (Mev) of integration below "K-edge".
TH(I) $\quad-$ Thickness of $i^{\text {th }}$ shield ( $\mathrm{gm} / \mathrm{cm}^{2}$ ).

## INPUT DATA PREPARATION

Card Type 1-72 columns of Hollerith information, H, to identify the case or cases being run. Format (12A6)

Card Type 2 - 1 st 3 columns, 3 one digit integers:
(a) The first integer (NMUT) indicates the number of gamma ray mass attenuation coefficient ( $\mu$ ) tables;
(b) The second integer (NST) indicates the number of electron stopping power tables;
(c) The third integer (NNT) indicates the number of electron integral flux tables. Format (3I1)

Note: The dimensions set by the program limit the number of each kind of table to six.

Card types 3 and 4 are read in a "DO LOOP" ranging over the number of tables (NMUT).

Card Type 3 - Columns 1-10, the atomic number, $\operatorname{ZSTAR}(J)$, of the element applicable to the table to be read (card type 4); columns 11-12, the number, $\operatorname{NKMU}(\mathrm{I})$, of entries in the table. Format (E10., I2)

Card Type 4 - Columns 1-10, the photon energy, FKMU(J, I), (Mev) for which the mass attenuation coefficient, FMUII(J, I), is tabulated; columns 11-20, the mass attenuation coefficient ( $\mathrm{cm}^{2} / \mathrm{gm}$ ). Format (2E10.)

Note: The number of cards type 4 for each card type 3 should be equal to the number in columns 11 and 12 of card type 3. Further, the number of cards type 3 should be equal to NMUT (column 1, card type 2). The sequencing of the cards is: card type 3 , cards type 4 , card type 3 , cards type 4 , etc.

Cards types 5 and 6 are read in a "DO LOOP" ranging over the number of electron stopping power tables (NST).

Card Type 5 - Columns 1-10, the atomic weight, WA(I), of the element for which stopping powers are to be used from cards type 6 ; columns 11-20, the atomic number, $\mathrm{Z}(\mathrm{I})$, of the same element; columns 21 and 22, the number, NES(I), of entries in the stopping power table for this element. Format (2E10., L2)

Card Type 6 - Columns 1-10, the electron kinetic energy, ESI(I, J) (Mev), for which the stopping power is tabulated; columns 11-20, the stopping power, $\mathrm{S}(\mathrm{I}, \mathrm{J})\left(\mathrm{Mev}^{1} \mathrm{gm}^{-1} \mathrm{~cm}^{2}\right)$. Format (2E10.)

Note: The number of cards type 6 for each card type 5 should be equal to the number in columns 21 and 22 of card type 5 . Further, the number of cards type 5 should be equal to NST (column 2, card type 2). The sequencing of the data cards is: card type 5 , cards type 6, card type 5 , cards type 6 , etc.

Card Type 7 - Columns 1 and 2, the number, NFDC, of energy-flux-todose conversion factor entries (cards type 8).

Card Type 8 - Columns 1-10, photon energy, FKDC(I) (Mev), at which energy-flux-to-dose conversion factor is tabulated; columns 11-20, energy-flux-to-dose conversion factor, FDCV(I). Format (I2/(2E10.))

Card types 9, 10, 11 and 12 are read in a "DO LOOP" ranging over the number of $\mu$-tables (NMUT). These cards are applicable to the dose buildup tables. There should be as many dose buildup tables as there are mass attenuation coefficient $(\mu)$ tables, and the order of the elements should be the same in both sets of tables.

Card Type 9 - Columns 1 and 2, the number, NBEE, of entries in the energy table; columns 3 and 4, the number, NBXX, of entries in the mean-free-path table.

Card Type 10 - Seven fields of ten columns per field, each field contains a photon energy, $\mathrm{BE}(\mathrm{JJ}, \mathrm{KK})(\mathrm{Mev})$, for which the dose buildup factors are tabulated. These cards are continued until the number of entries is equal to the number in columns 1 and 2 in card type 9. The entries must be in increasing energy. Format (2I2/(7E10.))

Card Type 11 - Seven fields of ten columns per field, each field contains the number, $\mathrm{BX}(\mathrm{JK}, \mathrm{KK})$, of mean free paths of material thickness for which the dose buildup factors are tabulated. These cards are continued until the number of entries is equal to the number in columns 3 and 4, card type 9. The entries must be in order of increasing magnitude. Format (7E10.)

Card Type 12 - Seven fields of ten columns per field, each field contains a photon dose buildup factor, BUP(JK, JJ, KK). For each energy in card type 10, dose buildup factors are entered corresponding to each of the number of mean free paths entered in card type 11. The total number of dose buildup entries should be equal to the product of the two numbers in card type 9. Format (7E10.)

Note: The sequencing of cards types $9,10,11$ and 12: card type 9, card(s) type 10 , card(s) type 11 , cards type 12 , card type 9 , card(s) type 10 , card(s) type 11, cards type 12, etc. The number of these sets should equal the number of $\mu$-tables (NMUT).

Card types 13 and 14 are read in a "DO LOOP" ranging over the number of electron integral flux tables (NNT; column 3, card type 2).

Card Type 13 - Columns 1 and 2, the number, NTN(1), of entries in the electron integral flux table. Format (I2)

Card Type 14 - Columns 1-10, electron energy, ETNI(I, J) (Mev), for which the integral flux is tabulated; columns 11-20, the integral flux value, FNII(I, J), for the given electron energy. The number of these cards should be equal the number in columns 1 and 2, card type 13. Format (2E10.)

Note: The sequencing of card types 13 and 14 is: card type 13, cards type 14 , card type 13 , cards type 14 , etc. The number of sets of card type 13 and cards type 14 should equal NNT (column 3, card type 2).

The following card types are case cards.
Card Type 15-Column 1, spectrum option, IOPT:
$1=$ monoenergetic electron flux
$2=$ exponential integral flux, $Q(E)=A e^{-E / B}$
$3=$ tabular integral flux;
Column 2, shield option, ISHLD - number indicates material location in sequence of $\mu$-tables;
Column 3, target option, ITAR - number indicates material location in sequence of stopping power tables;

Column 4, option for tabulated integral fluxes, INTAB integer locates position of integral flux table in sequence of integral flux tables;

Column 5, print option, IPDR:
$1=$ print intermediate data before integrating,
$0=$ omit above printing;
Column 6, compute option, ISTOP:
$0=$ compute,
1 = stop,
$2=$ dump, then stop;
Columns 9 and 10 , number, NTH, of shield thicknesses (maximum of twenty);
Columns 11-20, the coefficient "A" of $A e^{-B / E}$ for the exponential integral flux option,

Columns 21-30, the " B " of the exponential integral flux option;

Columns 31-40, the maximum electron total energy, ENM, ( $\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}$ units), including rest mass;
Columns 41-50, lower limit, BLIMIT (Mev), of integration above the 'K-edge";

Columns 51-60, upper limit, ULIMIT (Mev), of integration below the "K-edge".

Card Type 16 - Seven fields of ten columns in which are entered the shield thicknesses, $\mathrm{TH}(\mathrm{I})$, to be investigated. Number of entries must equal number in columns 9 and 10 in card type 15.
Format (6I1, 2XI2, 5E10./(7E10.))
Sequencing of card types 15 and 16 is: card type 15 , card(s) type 16 , card type 15 , card(s) type 16 , etc. A blank card should always follow a stop or dump card (" 1 " or " 2 " in column 6 of card type 15).

## OUTPUT FORMAT

LEBC output consists of one page of information for each case card, card types 15 and 16, executed. Each page exhibits the following format. The heading card, card type 1 , is printed at the top of the page. Below the heading, information is displayed consisting of the spectrum option $(N(E)$ OPTION), the value of $A$, the value of $B$, the atomic weight (WA) of the photon shielding material, the atomic number ( $Z$ ) of the electron stopping material, the atomic number ( $\mathrm{Z}^{*}$ ) of the photon shielding material, the maximum total energy (EN(MAX)) of the incident electrons, and the integral flux table (N TABLE) used, if any. Immediately beneath the above, two columns indicate the thicknesses, $\mathrm{gm} / \mathrm{cm}^{2}$, of shielding material and the photon dose rate, $\mathrm{r} / \mathrm{hr}$., at each of the thicknesses. Last, twenty values of photon energy ( K ), in $\mathrm{mc}^{2}$ units and the corresponding values of photon differential energy flux ( $\mathrm{I}(\mathrm{K})$ ) are printed.

## 10. MISSION FLUX CODE (LMFC)

## CODE DESCRIPTION

The mapping of the trapped radiation belts is, as yet, incomplete. It is necessary, therefore, to assume certain symmetries. In particular, the altitudes corresponding to the lower edge of the proton belt at the geomagnetic equator are assumed to be independent of geomagnetic latitude. Variation of proton and electron flux densities with geomagnetic latitude and with distance above the bottom of the belt is assumed to be independent of longitude. With these assumptions, proton and electron flux densities are specified at all points as a function of geomagnetic coordinates.

The geomagnetic position of the vehicle is approximated by the following equations:

$$
\begin{gather*}
R_{M}\left(\lambda_{G}\right)=R_{G}+R_{B}(0)-R_{B}\left(\lambda_{G}\right)  \tag{10-1}\\
\phi_{M}\left(\phi_{G}, \lambda_{G}\right)=\phi_{G}-\phi_{E}\left(\lambda_{G}\right)  \tag{10-2}\\
\lambda_{M}\left(\phi_{G}, \lambda_{G}\right)=\lambda_{G}-K_{1} \cdot \phi_{G} \cdot \sin \left(\lambda_{G}-K_{2}\right) \tag{10-3}
\end{gather*}
$$

where $\quad R_{M}, R_{G}=$ magnitude of vehicle position vector in geomagnetic (M) and geographic (G) coordinates
$R_{B}=$ distance to the bottom of the proton belt from the surface of the earth
$\phi_{M}, \phi_{G}=$ geomagnetic (M) and geographic (G) north latitude of vehicle
$\phi_{E}=$ north geographic latitude of the geomagnetic equator
$\lambda_{M}, \lambda_{G}=$ geomagnetic and geographic east longitude of vehicle. $\mathrm{K}_{1}, \mathrm{~K}_{2}=$ empirical constants, 0.25 and $111^{\circ}$, respectively. These constants are from an empirical fit to Vestine's data. 50

The total flux incident on the vehicle at the completion of a specific time interval is

$$
\begin{equation*}
N(T)=\int_{0}^{T} \frac{d N}{d t}\left(R_{M}, \phi_{M}, \lambda_{M}\right) d t \tag{10-4}
\end{equation*}
$$

where $\mathrm{dN} / \mathrm{dt}$ is the integral number flux rate, and the vehicle coordinates are given as functions of time.

Tables of integral number fluxes versus $R_{M}$ and $\phi_{M}$ for both trapped protons and electrons are stored in the code library (input data). In addition to the flux tables, a table of $R_{B}$ versus $\lambda_{G}$ is also stored. Vehicle geographic coordinates tabulated at equal time intervals are input to describe a specific mission. These coordinates are transformed to geomagnetic coordinates by Equations $10-1$ to $10-3$ and $\mathrm{dN} / \mathrm{dt}$ is obtained as a function of time. The total proton and total electron fluxes are determined by a numerical integration (Simpson's Rule) of Equation 10-4.

For vehicles describing closed orbits, it may be more convenient to have the code determine the vehicle geomagnetic coordinates as a function of time. Neglecting perturbations to the orbit, the equations of motion of an orbiting body may be expressed as:

$$
\begin{align*}
& \ddot{x}=G x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}  \tag{10-5}\\
& \ddot{y}=G y\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}  \tag{10-6}\\
& \ddot{z}=G z\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \tag{10-7}
\end{align*}
$$

where $\mathrm{x}, \mathrm{y}$, and $\mathrm{z}=$ Cartesian coordinates with the origin at the geographic center of a non-rotating earth; and,
$\mathrm{G}=$ the universal gravitation constant multiplied by the mass of the earth, $3.985 \times 10^{14} \mathrm{~m}^{3} / \mathrm{sec}^{2}$.

The solution of these equations is obtained from a subroutine of the main program. This subroutine is named "ORBIT".

A right handed coordinate system is selected such that the z -axis is coincident with the earth's axis of rotation, the $y$-axis lies in the orbital plane and has the same sense as the vehicle velocity vector at perigee.

The initial conditions are:

$$
\begin{gather*}
x(0)=R_{G P} \cos \alpha  \tag{10-8}\\
y(0)=0  \tag{10-9}\\
z(0)=R_{G P} \sin \alpha  \tag{10-10}\\
\dot{x}(0)=0  \tag{10-11}\\
\dot{y}(0)=\left[(1-e) G / R_{G P}\right]^{1 / 2}  \tag{10-12}\\
\dot{z}(0)=0 \tag{10-13}
\end{gather*}
$$

where $R_{G P}=$ the magnitude of the position vector at perigee;
$\alpha=$ angle of inclination of orbital plane with respect to the equatorial plane; and,
$e=$ eccentricity of the closed trajectory.
Subject to the initial conditions, Equations $10-8$ through 10-13, numerical solutions of Equations $10-5$ through 10-7 are obtained by the application of the Runge-Kutta-Gill integration formulae. The fourth iteration is accepted as a solution, and 200 equal time intervals are treated.

The time dependent Cartesian coordinates are transformed to earth geomagnetic coordinates, relative to a rotating earth, by the relations:

$$
\begin{gather*}
R_{G}=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}  \tag{10-14}\\
\phi_{G}=\arcsin \left(z / R_{G}\right)  \tag{10-15}\\
\lambda_{G}=\lambda_{G P}-\lambda_{E} t-d_{2} \arctan (y / x) \tag{10-16}
\end{gather*}
$$

here $d_{2}=\left\{\begin{array}{r}1 \text { when orbit is west to east } \\ -1 \text { when orbit is east to west }\end{array}\right.$
Equations 10-1 to 10-3 are used to obtain the geomagnetic coordinates, and the time integrated flux is provided by Equation 10-4.

## GLOSSARY OF INPUT DATA TERMS

PHIEM(I) - Magnetic latitude associated with electron integral flux values.
REM(I) - Altitude above the earth's magnetic center associated with electron integral flux values (kilometers).

EF(I, J) - Electron integral flux values.
PHIPM(I) - Magnetic latitude associated with proton integral flux values.
RPM(I) - Altitude above the earth's magnetic center associated with the proton integral flux values (kilometers).

PF(I, J) - Proton integral flux values.

FLT(I) - Geographic East longitude.
PHIB(I) - North geographic latitude of the geomagnetic equator at geographic east longitude FLT.

RB(I) - Distance of the bottom of the proton belt from the surface of the earth.

JDATA - Option to:

1. Read in geographic coordinates of points on vehicle trajectory.
2. Compute geographic coordinates of points on vehicle trajectory.
3. Call EXIT.

NT - Number of geographic coordinate points on vehicle trajectory to be read. (These points determine the intervals used in obtaining the integrated particle flux over the trajectory.)

T(I) - Vehicle time coordinate (seconds).
RG(I) - Vehicle geocentric radial coordinate (kilometers).
PHIG(I) - Vehicle geocentric latitudinal coordinate (degrees).

FLG(I) - Vehicle geocentric longitudinal coordinate (degrees).
E - Orbit eccentricity.
ALPHAI - Orbit plane angle of inclination (degrees) to geographic equator.
P - Perigee (meters).
OT - Time in trajectory (minutes). (If OT $\leq 0$, code computes times for closed orbit.)

FLNO - Geocentric longitude, degrees, at $T=0$ (perigee).
RSENSE - Direction of orbit: 1 = west to east
$-1=$ east to west

## INPUT DATA PREPARATION

Card Type 1 - Seven fields of ten columns per field, each field contains a geomagnetic latitude (in degrees, in order of increasing magnitude). There should be nineteen of these latitudes 7 on the 1 st card, 7 on the second, and 5 on the third. Format (7E10.)

Card Type 2 - Seven fields of ten columns per field, each field contains a geomagnetic radius (in kilometers). There should be twelve of these radii - 7 on the first card and 5 on the second. Format (7E10.)

Card Type 3 - Seven fields of ten columns per field, each field contains an electron integral flux value associated with the above latitudes and radii. The first three cards type 3 contain nineteen electron integral fluxes associated with the nineteen latitudes and the first altitude; the second three cards type 3 contain nineteen electron integral fluxes associated with the nineteen latitudes and the second altitude; this sequencing is continued for twelve altitudes. Format (7E10.)

Card Type 4 - Seven fields of ten columns per field, each field contains a geomagnetic latitude (in degrees, in order of increasing magnitude). There should be 22 of these latitudes -7 on the first 3 cards and 1 on the fourth. Format (7E10.)

Card Type 5 - Seven fields of ten columns per field, each field contains a geomagnetic radius (in kilometers). There should be twelve of these radii - 7 on the first card and 5 on the second. Format (7E10.)

Card Type 6 - Seven fields of ten columns per field, each field contains a proton integral flux value associated with the latitudes and radii in card types 4 and 5 . The first four cards type 6 contain 22 proton integral fluxes associated with the 22 latitudes at the first altitude; the second four cards type 6 contain 22 proton integral fluxes associated with the 22 latitudes at the second altitude; this sequencing is continued for twelve altitudes. Format (7E10.)

Card Type 7 - Columns 1-10, geographic longitude; columns 11-20, north geographic latitude of the geomagnetic equator at the longitude in columns 1-10; columns 21-30, the altitude (in meters), from the surface of the earth, of the bottom of the belt at the longitude in columns $1-10$. There should be 37 of these cards with longitudes from $0^{\circ}$ to $360^{\circ}$. (All longitudes and latitudes are in degrees.) Format (3E10.)

Card Type 8 - Column 1, an integer: 1, 2 or 3.
If 1 , obtain trajectory points by reading cards type 9 and 10 .
If 2 , obtain trajectory points by reading card type 11 .
If 3 , end computations.
Card Type 9 - Columns 1-3, an integer (right adjusted) signifying the number of cards type 10 to follow. Format (I3)

Card Type 10 - Columns 1-10, time (in seconds) of this point on trajectory; columns 11-20, geographic radius to trajectory at this time; columns 21-30, geographic latitude at this time; columns $31-40$, geographic longitude at this time. The number of cards type 10 should equal the integer in card type 9. Format (4E10.)

Card Type 11 - Columns 1-10, eccentricity of orbit; columns 11-20, inclination angle of orbit; columns 21-30, perigree of orbit (in meters); columns 31-40, time in orbit (in minutes, should be less than or equal to one period; if zero or negative,
program will compute time for one period); columns 41-50, geographic longitude of perigee; columns 51-53, orbit direction (if $1_{\circ}$, west to east; if $-1_{\circ}$, east to west). Format (5E10., E3.)

## OUTPUT FORMAT

The first data output by the LMFC is a two-dimensional array of the electron integral flux values. The first line of output is a list of the geomagnetic altitudes, and the first column on the left are the geomagnetic latitudes; the electron integral flux values are associated with the given altitudes and latitudes. The second two-dimensional array is the table of proton integral flux values, analogous to the electron table.

When JDATA $=2$, card type 8 , the values of the time, $T$ (in seconds), and the geographic coordinates $\mathrm{X}, \mathrm{Y}$, and Z , computed by subroutine ORBIT, are listed in an array of eight columns. When JDATA $\neq 2$, this information is not printed.

The next table displays the vehicle geocentric coordinates along the trajectory and the electron and proton integral flux values at these positions. Beneath this table, the time integrated electron and proton flux values along the vehicle flight path are exhibited.

# PROTON RANGE AND STOPPING POWER DATA 



| E | 8E | c | MG | AL | FE | CU | AG | CS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 325. | 2.731E 00 | 3.019 E 00 | 2.753 E 00 | 2.663500 | $2.375 E 00$ | 11E 00 | 2.063 E 00 | 1.917E CO |
| 350. | $2.625 E 00$ | 2.904E 00 | 2.649 E 00 | 2.563800 | 2.286 ECO | $2.225 E 00$ | 1.988 E 00 | 1.848 E 00 |
| 375. | 2.533 E 00 | 2.804 E 00 | 2.559 E 00 | $2.476 E 00$ | 2.209 E 00 | 2.150E 00 | 1.923 E 00 | 1.788 E 00 |
| 400. | 2.453 E 00 | $2.717{ }^{0} 00$ | 2.480 E 0 | 2.400 EO | $2.141 E 00$ | 2.c84E 00 | 1.887 E 00 | 1.736 E 00 |
| 450. | 2.320500 | 2.573 E 00 | 2.350 E 00 | 2.274 E 00 | 2.029 E 00 | $1.976 E 00$ | 1.773 E 00 | $1.649 E 00$ |
| 500. | 2.214 E 00 | 2.459 E 00 | 2.246 E 00 | 2.174 E 00 | 1.940 E 0 | 1.890 E 00 | 1.699 E 0 | 1.581 E 00 |
| 550. | 2.128 E 00 | 2.366 E 00 | 2.163 E 00 | 2.093 E 00 | 1.869 E 00 | 1.820E 00 | 1.639600 | $1.526 E 00$ |
| 600. | 2.058 E 00 | 2.290100 | 2.094 E 00 | $2.027 E 00$ | 1.809 O 0 | 1.762 E 00 | 1.589 E 0 | 1.480 E 00 |
| 700. | 1.949 E 00 | 2.174E 00 | 1.989 E 00 | 1.925 Ec 0 | 1.719 E 00 | $1.675 E 00$ | $1.514 E 00$ | 1.412 E 00 |
| 800. | $1.8700^{00}$ | 2.089 E 00 | 1.913 E 00 | 1.852 E 0 | 1.654 ECO | 1.611500 | 1.460 E 00 | 1.362E 00 |
| 900. | 1.811 E 00 | $\underline{2.026 E ~} 00$ | 1.857E 00 | 1.798 E 00 | 1.606 E 00 | 1.564 E 00 | 1.421 E 00 | 1.327E 00 |
| 1000. | 1.766 E 00 | $1.978{ }^{1.80}$ | 1.815E 00 | 1.757800 | 1.569 E 00 | $1.529 E 00$ | 1.391 E 00 | 1.300 E OC |
| 1250. | 1.691 E 00 | 1.898 E 00 | 1.747 E 00 | $1.691 E 00$ | 1.510 E 00 | 1.472 E 00 | 1.344 E 0 J | 1.258 ECO |
| 1500. | 1.648 E 00 | 1.853 E 00 | $1.710 E^{00}$ | 1.655 E 00 | 1.479 ECO | 1.440 E 00 | 1.320 E 00 | 1.238 E 00 |
| 1750. | 1.623E CO | 1.826E 00 | 1.690 E 00 | 1.635 E 00 | $1.461 E 00$ | 1.423 E 00 | 1.308 E 00 | 1.229 E 00 |
| 2000. | 1.608 E 00 | 1.811 E 00 | 1.680E 00 | 1.525800 | 1.453 E 00 | 1.415 E 00 | 1.303E 00 | 1.226E 00 |
| 2250. | 1.600 E 00 | 1.802E 00 | $1.676 \pm 00$ | 1.621 E 00 | 1.449 E 00 | 1.412 E 00 | 1.302 E 00 | 1.227E 00 |
| 2500. | 1.595 E 00 | $1.798 \mathrm{E}^{1.70}$ | 1.677 E 00 | $1.621 E 00$ | 1.449 E 00 | 1.411500 | 1.304 E 00 | 1.231 E 00 |
| 2750. | 1.594 E 00 | $1.797 E 00$ | 1.679 E 00 | 1.623 E 00 | 1.452 E 00 | 1.414 E 00 | 1.308 E 00 | $1.236 E 00$ |
| 3000. | 1.595 E 00 | 1.798 E 00 | 1.683 E 00 | 1.627 E 00 | 1.455 E 00 | 1.417 E 00 | 1.313 E 00 | 1.242 E 00 |
| 3500. | 1.599 E 00 | 1.803 E 00 | $\underline{1.695 E} 00$ | 1.637 E 00 | 1.465 E 00 | 1.427 E 00 | 1.324 E 09 | 1.256E 00 |
| 4000. | 1.607 E 00 | $1.812 E 00$ | 1.708 E 00 | 1.649 E 00 | $1.477 E 00$ | 1.438800 | 1.337 E 00 | 1.271 ECO |
| 4500. | 1.615 E OO | 1.821 E 00 | $1.721 E 00$ | 1.662 E 00 | $1.489 E 00$ | 1.450 E 00 | 1.351 E 00 | 1.286 E 00 |
| 5000. | 1.625 E 00 | 1.832 E 00 | $1.734 E^{00}$ | 1.674 E 00 | 1.501600 | 1.462 E 00 | 1.364 E 00 | 1.300E 00 |
| 6000. | 1.643 E 00 | 1.852 E 00 | 1.759 E 00 | 1.698 E 00 | $1.524 E 00$ | 1.485 E 00 | 1.388 E 00 | 1.328 E 00 |
| 7000. | 1.660 E 00 | 1.872 O 0 | 1.782 E 00 | 1.719 E 00 | 1.546 ECO | 1.506E 00 | 1.411 E 00 | 1.353 E 00 |
| 8000. | 1.676 E 00 | 1.890 E 00 | 1.802 E 00 | 1.738 E 00 | 1.567 ECO | $1.526 E 00$ | 1.432 E 00 | $1.376 \mathrm{E}^{1} 00$ |
| 9000. | $1.691 E 00$ | 1.907 EO | $1.820 E 00$ | 1.756 E 00 | 1.585 E 00 | 1.544 E 00 | $1.451 E 00$ | 1.396E 00 |
| 10000. | 1.704 E 00 | 1.922E 00 | $1.836 E 00$ | $1.771 E 00$ | 1.602 ECO | 1.560E 00 | 1.468 E 00 | 1.415E 00 |
| 12500. | 1.733 E 00 | 1.955 E 00 | 1.872 E 0 | 1.806E 00 | 1.640 ECO | 1.597E 00 | 1.505 E 00 | $1.456 E 00$ |
| 15000. | 1.757 E 00 | 1.983 E 00 | 1.901 E 00 | 1.834 E 00 | 1.671 E 00 | 1.627E 00 | 1.536 E 00 | 1.490 E 00 |
| 17500. | 1.777 E 00 | 2.007E 00 | $1.927 E 00$ | 1.858 E 00 | 1.698 E 00 | 1.653 E 00 | $1.562 E 00$ | 1.518E 00 |
| 20000. | 1.794 E 00 | 2.027E 00 | 1.949 E 00 | 1.880 E 00 | 1.722 E 00 | 1.676E 00 | 1.584 E 00 | 1.543 E 00 |
| 22500. | $1.8100^{00}$ | 2.045 E 00 | $1.968{ }^{1.00}$ | 1.898 E 00 | 1.742 E 00 | 1.696E 00 | 1.604 E 00 | 1.565100 |
| 25000. | 1.824 E 00 | $2.061 E 00$ | $1.986 E 00$ | 1.915 E 00 | 1.761 E 00 | 1.714 E 00 | $1.621 E 00$ | 1.584 E 00 |
| 27500. | 1.836 E 00 | 2.076 E 00 | 2.002 E 00 | $1.931 E 00$ | 1.778 E 00 | 1.731 E 00 | $1.637 E 00$ | 1.602 E 00 |
| 30000. | 1.848 E 00 | 2.089 E 00 | $2.016{ }^{2} 00$ | 1.945 E 00 | 1.793 E 00 | 1.746 E 00 | 1.651 E 00 | 1.617E 00 |
| 40000. | $1.885 E 00$ | 2.132 E 00 | $2.064{ }^{2} 00$ | $1.991 E 00$ | 1.842 E 00 | 1.795E 00 | 1.696 E 00 | 1.669E 00 |
| 50000. | 1.914 E 00 | 2.165 E 00 | 2.101E 00 | $2.027 E 00$ | 1.880E 00 | 1.832 E 00 | 1.731 E 00 | 1.709E 00 |
| 60000. | 1.938 E 00 | 2.192 E 00 | $2.131 E 00$ | 2.055 E 00 | 1.909 E 00 | $1.861 E 00$ | $1.759 E 00$ | 1.740 E 00 |
| 10000. | 1.958 E 00 | 2.215 E 00 | 2.156 E 00 | 2.080E 00 | 1.934 E 00 | 1.886 E 00 | 1.782 E 00 | 1.766E 00 |
| 80000. | $1.975 E 00$ | $2.234 E 00$ | $2.178 \mathrm{E}^{2} 00$ | $2.100 E 00$ | $1.955 E 00$ | 1.906 E 00 | $1.802 E 00$ | 1.787 E 00 |
| 90000. | 1.9 SIE 00 | $2.252 E 00$ | $2.197 E 00$ | 2.118 E 00 | 1.973 E 00 | 1.924 E 00 | 1.819 E 00 | $1.806 E 00$ |
| 0000 | .004E | 2.267 EO | 2.213E 00 | 2.134 E 00 | 1.989 E 00 | 1.940 E 00 | 1.835E 00 | 1.823E 00 |

V.



| E | BE | C | G | AL | FE | CU | AG | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 325. | 7.220 E 01 | 6.554 E 01 | 7.224E 01 | 7.472 El | 8.407 El | 8.659 El | $9.787 E 01$ | 1.054E C2 |
| 350. | 8.154 E 01 | 7.399E 01 | 8.150E OL | 8.430E 01 | 9.480 E 01 | 9.762 E 01 | 1.102E 02 | 1.187E 0? |
| 375 | 9.124 E 01 | 8.275 E 01 | 9.110 E 01 | 9.422 E 01 | 1.059 E 02 | $1.091 E 02$ | 1.230 E 02 | 1.325 E 02 |
| 400. | 1.013 E 02 | $9.181 E 01$ | 1.010 E 02 | $1.045 \mathrm{E} \mathrm{O2}$ | 1.174 E 02 | 1.209 E 02 | 1.362 E 02 | 1.467 E 02 |
| 450. | 1.222 E 02 | 1.107E 02 | 1.218 E 02 | $1.259 E 02$ | 1.414 E 02 | 1.455 E 02 | 1.637E 02 | 1.762E C2 |
| 500. | 1.443 E 02 | $1.306 E^{02}$ | 1.435 E 02 | 1.484 E 02 | 1.666 E 02 | 1.714 E 02 | 1.925 E 02 | 2.072 E 02 |
| 550. | 1.674 E 02 | 1.514 E 02 | 1.662 E 02 | 1.719 E 02 | $1.929 \mathrm{EC2}$ | 1.984 E 02 | 2.225E 02 | $2.394 E 02$ |
| 600. | 1.913 E 02 | 1.729 E 02 | 1.897 E 02 | $1.961 E 02$ | 2.201E 02 | 2.263E 02 | 2.535 E 02 | 2.727E C2 |
| 700. | 2.413 E 02 | 2.177E 02 | 2.388E 02 | 2.468 E 02 | 2.769 E 02 | $2.246 E 02$ | 3.181E 02 | 3.420E 02 |
| 800. | 2.937E 02 | 2.647E 02 | 2.901E 02 | 2.998 E 02 | 3.362 E 02 | 3.455E 02 | 3.853E 02 | 4.141E 02 |
| 900. | 3.480 E 02 | 3.133E 02 | 3.432 E 02 | 3.547 E 02 | 3.976 E C2 | $4.085 E 02$ | 4.548 E 02 | $4.886 \mathrm{E} \mathrm{O2}$ |
| 1000. | 4.040802 | 3.633E 02 | 3.977 E 02 | 4.110 E 02 | 4.607 E 02 | 4.732 E 02 | 5.260E 02 | 5.647 E 02 |
| 1250. | 5.489 E 02 | $4.926 E 02$ | 5.383E 02 | 5.563 E 02 | $6.233 E C 2$ | 6.402 E 02 | 7.091E 02 | 7.605E 02 |
| 1500. | 6.988 E 02 | 6.260102 | 6.831E 02 | 7.059E 02 | $7.908 \mathrm{EC2}$ | $8.120 E 02$ | $8.969 \mathrm{E} ~ 02$ | 9.610 E 02 |
| 1750. | $8.517 E 02$ | 7.620E 02 | 8.303 E 02 | 8.579 E 02 | $9.609 \mathrm{O} ~ 02$ | 9.867 E 02 | 1.087E 03 | 1.164 E 03 |
| 2000. | $1.007 E 03$ | $8.995 E 02$ | 9.787 E 02 | 1.011 E 03 | 1.133E 03 | 1.163 E 03 | 1.279 E 03 | 1.367 E 03 |
| 2250. | $1.162 E 03$ | 1.038803 | 1.128 E 03 | $1.165 E 03$ | 1.305 E 03 | 1.340 E 03 | $1.471 E 03$ | 1.571 E 03 |
| 2500. | 1.319E 03 | $1.177 E 03$ | $1.277 E 03$ | $1.320 E 03$ | 1.477E 03 | 1.517 E 03 | 1.663 E 03 | 1.775 E 03 |
| 2750. | 1.476 E 03 | $1.316 E 03$ | 1.426 E 03 | 1.474 E 03 | 1.650 E O 3 | 1.694 E 03 | $1.854 \mathrm{E} \quad 03$ | 1.978 E 03 |
| 3000 . | $1.633 E 03$ | 1.455 E O | $1.574 E^{1} 03$ | $1.627 E 03$ | 1.822 E O 3 | $1.871 \mathrm{E}^{03}$ | 2.045 E 03 | $2.179 E 03$ |
| 3500. | 1.946 E 03 | 1.733 E 03 | $1.870 E^{\text {E }} 3$ | 1.934 E O 3 | 2.164E 03 | 2.222 E 03 | $2.424 E 03$ | 2.580E C3 |
| 4000 . | 2.258 E 03 | $2.009 E 03$ | 2.164E 03 | 2.238E 03 | $2.504 \mathrm{EC3}$ | 2.571E 03 | 2.800E 03 | 2.975 E 03 |
| 4500. | $2.568 E 03$ | 2.285E 03 | $2.456 E 03$ | 2.540E 03 | $2.241 E 03$ | $2.918 \mathrm{E} \quad 03$ | 3.172E 03 | 3.367E 03 |
| 5000. | 2.877 E 03 | 2.558 E 03 | 2.745 E 03 | 2.840E 03 | 3.176 E 03 | $3.261 E 03$ | 3.540103 | 3.753 E O3 |
| 6000. | $3.489 \mathrm{E} \quad 03$ | 3.101E 03 | 3.318 E 03 | 3.433 E O | 3.837 E 03 | 3.940E 03 | $4.267 E 03$ | $4.514 \mathrm{E} \quad 03$ |
| 7000. | 4.094E 03 | 3.638 E 03 | $3.882 \mathrm{E} \mathrm{O3}$ | 4.018 E 03 | 4.488 ECO | 4.609 E 03 | $4.981 E 03$ | 5.260 E 03 |
| 8000. | $4.693 E 03$ | $4.170 \mathrm{E}^{4} \mathrm{O} 3$ | $4.441 E 03$ | 4.597E 03 | 5.131E 03 | $5.268 E 03$ | 5.685 E 03 | 5.993 E 03 |
| 9000. | 5.287E 03 | $4.697 E 03$ | $4.993 E 03$ | 5.169 E 03 | $5.765 \mathrm{E}^{03}$ | 5.920E 03 | $6.378 \mathrm{E}^{03}$ | 6.715 E 03 |
| 10000. | $5.876 \mathrm{E}^{5} \mathrm{O}$ | $5.219 E 03$ | 5.540 E 03 | 5.736E C3 | 6.392E 03 | $6.564 E 03$ | $7.063 E 03$ | 7.426E O3 |
| 12500. | 7.331E 03 | 6.508 E 03 | 6.888 E 03 | 7.134E 03 | 7.934 E 03 | 8.148 E 03 | 8.744 E 03 | 9.167 E 03 |
| 15000. | 8.763 E 03 | 7.777E 03 | $8.213 E 03$ | $8.507 E 03$ | $9.444 \mathrm{E} \quad 03$ | 9.699E 03 | 1.039 E 04 | 1.086 E 04 |
| 17500. | 1.018 E 04 | 9.030 E 03 | 9.519803 | $9.861 E 03$ | 1.093 E O | 1.122 E 04 | $1.200 E 04$ | $1.253 \mathrm{EC4}$ |
| 20000. | 1.158 E 04 | 1.027 E 04 | 1.081E 04 | $1.120 E 04$ | 1.239 E 04 | 1.272E 04 | 1.359 E 04 | 1.416 E 04 |
| 22500. | $1.296 E 04$ | 1.150 E 04 | $1.209 E 04$ | 1.252 E 04 | 1.383 E O | $1.421 E 04$ | $1.516 E 04$ | 1.577 E 04 |
| 25000. | $1.434 E 04$ | 1.271 E 04 | 1.335 E 04 | 1.383 E 04 | $1.526 E 04$ | 1.567E 04 | 1.671E 04 | $1.736 \mathrm{E} \quad 04$ |
| 27500. | $1.571 E 04$ | 1.392 E 04 | 1.460 E 04 | $1.513 E 04$ | 1.667 E 04 | 1.712 E 04 | 1.824 E 04 | $1.892 \mathrm{EC4}$ |
| 30000. | $1.706 E 04$ | 1.512 E 04 | 1.585 E 04 | 1.642 E 04 | 1.807E 04 | 1.856 E 04 | 1.976804 | 2.048 E 04 |
| 40000. | $2.242 E 04$ | 1.986 E 04 | 2.075 E 04 | 2.150 E 04 | 2.357 E 04 | $2.421 E 04$ | $2.574 E 04$ | 2.656 E 04 |
| 50000. | 2.7E8E 04 | $2.451 E 04$ | 2.555E 04 | 2.648 E 04 | 2.894 E 04 | 2.972E 04 | $3.157 E 04$ | 3.248E 04 |
| 60000 . | $3.287 E 04$ | $2.910 \mathrm{E}^{2} 4$ | $3.027 E 04$ | 3.138 E 04 | 3.422 E 04 | 3.514 E 04 | 3.730804 | 3.828E 04 |
| 70000. | 3.801 E 04 | $3.364 E 04$ | $3.494 E 04$ | $3.621 E 04$ | 3.942 E 04 | $4.047 E 04$ | 4.294 E 04 | $4.398 E 04$ |
| 80000. | 4.309 E 04 | 3.813 E 04 | 3.955E 04 | 4.100 E 04 | 4.457 E 04 | $4.575 E 04$ | 4.852 E 04 | $4.961 E 04$ |
| 90000. | 4.813 E 04 | 4.259504 | 4.412 E 04 | $4.574 E 04$ | 4.966 E 04 | 5.097 E 04 | 5.404 E 04 | 5.517 E 04 |
| 00000. | 5.314E 04 | 4.702 E 04 | 4.866 E 04 | 5.044E 04 | 5.471E 04 | 5.614 E 04 | 5.952 E 04 | $6.068 \mathrm{E}^{04}$ |



| $\begin{aligned} & E \\ & 2 . \end{aligned}$ | $\begin{gathered} \mathrm{h} \\ 3.755 E-C 2 \end{gathered}$ | $\begin{gathered} A U \\ 3.970 E-C 2 \end{gathered}$ | $\begin{gathered} P B \\ 4.100 E-02 \end{gathered}$ | $4.526 E-02$ | $\begin{gathered} 1 C H 21 N \\ 6.431 E-03 \end{gathered}$ | $\begin{gathered} H 20 \\ 7.277 E-03 \end{gathered}$ | $\begin{gathered} \text { TISSUE } \\ 7.257 E-03 \end{gathered}$ | $\begin{gathered} \text { GLASS } \\ 1.290 E-02 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3. | $5.554 E-C 2$ | 6．308E－02 | 6．481E－02 | 6．949E－02 | $1.328 \mathrm{E}-02$ | 1．482E－02 | $1.478 \mathrm{E}-\mathrm{C} 2$ | 2．364E－G2 |
| 4. | $8.6 \mathrm{C} 3 \mathrm{E}-\mathrm{C} 2$ | 9．148E－02 | 9．372E－C2 | 9．846E－02 | 2．215E－02 | 2．455E－02 | $2.449 E-02$ | 3．729E－C2 |
| 5 | 1．168E－C1 | 1．245E－01 | 1．274E－01 | 1．320E－c1 | 3．295E－C2 | 3．635E－02 | 3．627E－02 | 5．370E－02 |
| 6. | $1.517 \mathrm{E}-\mathrm{C} 1$ | 1．619E－01 | 1．655E－01 | 1．699E－01 | $4.56 C E-02$ | 5．C15E－02 | 5．005E－02 | 7．276E－02 |
| 7 ． | 1．9C5E－C1 | 2．033E－01 | 2． $077 \mathrm{E}-01$ | 2．121E－O1 | 6．036E－02 | 6．588E－02 | 6．576E－02 | 9．436E－C2 |
| 8. | 2．321E－C1 | $2.488 \mathrm{E}-01$ | 2．541E－C1 | 2．583E－C1 | 7．628E－02 | 8．350E－02 | 8．336E－02 | 1．134E－U1 |
| 9. | 2．754E－01 | 2．980E－01 | 3．343E－O1 | 3．085E－01 | 9．422E－C2 | 1．C3OE－01 | 1．328E－31 | $1.449 E-01$ |
| 10. | 3．293E－C1 | 3．5C9E－01 | 3．583E－01 | $3.626 \mathrm{E}-01$ | $1.138 E-C 1$ | 1．242E－01 | 1．240E－01 | 1．738E－01 |
| 12. | 4．3S7E－01 | 4．672E－01 | $4.771 E-01$ | $4.821 \mathrm{E}-\mathrm{Cl}$ | $1.581 \mathrm{E}-01$ | 1．721E－01 | 1．719E－01 | $2.393 t-C 1$ |
| 14. | 5．636F－01 | $5.972 \mathrm{E}-\mathrm{Cl}$ | 6．C97E－CL | 6．162E－01 | 2．087E－01 | 2．268E－01 | 2．266E－01 | 3．118E－01 |
| 16. | 7．OC8E－C I | 7．406E－01 | $7.560 \mathrm{E}-01$ | $7.643 \mathrm{E}-$－ 1 | 2．657E－C1 | 2．882E－21 | 2．882E－31 | $3.939 E-01$ |
| 18. | $8.5 C 8 E-01$ | 8．969E－01 | 9．153E－01 | 9．259E－01 | 3．288E－C1 | 3．562E－01 | 3．560E－01 | 4．844E－01 |
| 20. | $1.013 E 00$ | $1.066 E 00$ | 1.088 E 00 | 1．101E UO | 3．979E－C1 | 4．326E－01 | $4.304 \mathrm{E}-01$ | 5．831E－Cl |
| 22. | $1.188 E 00$ | $1.247 E C 0$ | 1.272 ECO | 1.289 EVO | $4.729 \mathrm{E}-01$ | 5．113E－01 | 5．111E－01 | 6．899E－01 |
| 24. | $1.374 E 00$ | 1.44 JE 30 | 1.469 E OJ | 1.489 E | 5．538E－こ1 | 5．981E－91 | 5．98JE－01 | 8．045E－01 |
| 26. | 1.572 ECO | $1.645 E 00$ | 1.678 E 0．J | 1.703 ECO | $6.4 C 3 E-01$ | 6．910E－D1 | 6．910E－01 | 9．259i－01 |
| 28. | 1.782 E 0 | $1.861 E 00$ | 1.899 EO | 1.928 E CO | 7．324E－01 | 7．899E－21 | 7．899E－01 | 1.657 CO |
| 30. | 2．こC3E C0 | 2．089E 00 | 2.131600 | $2.165 E 0$ | 8．301E－Cl | 8．947E－Jl | 8．948E－01 | 1．194E 00 |
| 35. | $2.6 C 3 F 2 J$ | 2．7C6E JC | 2．760E OJ | 2.8 .950 | 1．098E CO | 1．182E 00 | 1.122 E 0 J | 1．570E CO |
| 40. | 3.269 ECO | $3.390 E$ CC | $3.457 E 00$ | $3.524 E 00$ | $1.399 E 00$ | 1．5C4E CO | 1.505 E OO | 1．990E CO |
| 45. | 3．759E こ0 | $4.137 E 00$ | 4.219 O OJ | 4.3 .8 E 00 | 1.732 t 00 | 1．860E 00 | $1.861 E 05$ | 2.454 ECC |
| 50. | $4.750 E$ OO | $4.946 E 50$ | 5．C44E OO | 5.157 E 00 | $2.076 E C O$ | 2．250E 00 | $2.251 E 00$ | 2．959E 00 |
| 55. | 5.643 E 00 | 5.815 E －5 | 5.930 E 3 J | 6.070 CO | 2.45050 | 2.671 EJO | 2.673 E 0 | 3．5i4E CO |
| 60. | 6.554 E 00 | 6.742 E 00 | $6.875 E 00$ | 7.045 ECO | 2.913 E 00 | $3.124 E 00$ | 3.126 E OJ | 4.289600 |
| 65. | 7.522 E OO | 7.728 E 00 | 7.878 E OJ | 8.081 CO | 3.366 EO | 3.6078 CG | 3.610 E 30 | 4．713E 00 |
| 70. | 8.546 E OC | $8.770 E J C$ | 8.938 E 00 | 9．175E 00 | 3.847 ECO | 4．120E 00 | 4．124E 00 | $5.374 E 00$ |
| 75. | $9.624 E 02$ | 9.868 ECO | 1．0．05E 01 | 1.033 Cl | 4.355 E －0 | 4.663800 | $4.667 E 00$ | 6.072 E 0 |
| 80. | 1.075 E 01 | 1．1C2E 01 | $1.123 E 01$ | 1.153 E OL | 4.89 CE 00 | $5.233 E 00$ | 5.239 E OU | $6.806=00$ |
| 90. | 1．317E 01 | 1.348 EE O1 | 1.373501 | 1.411 El | $6 . C 38 E 00$ | 6.458 EO | 6.465 E O 3 | 8.378 ECO |
| 100. | 1.578 E 01 | $1.613 E 01$ | 1.643 E 01 | 1.690 E U 1 | 7.288500 | $7.790 E 00$ | 7.799 E J．J | 1．0．8E Cl |
| 110. | 1.857 E 01 | 1.897 El | 1.933 E 21 | 1.989 EL | 8.634 ECO | 9.225 E OO | $9.236 E 00$ | 1．172E 01 |
| 120. | $2.155 E 01$ | 2．199E O1 | 2．240E O1 | 2．307E 01 | 1.007 E 01 | $1.076 E 01$ | 1．077E 01 | 1.388 ECL |
| 130. | 2.470 ECl | 2.518 EL | 2．565E 01 | 2.644 EL | $1.16 C E C L$ | $1.239 E 31$ | 1.2405 OL | 1．596E CI |
| 140. | 2．802E 01 | 2．854E OL | 2.907 EL | 2．979E U1 | $1.322 E C 1$ | $1.411 E \quad 01$ | 1.413 E OL | 1.815 E 01 |
| 150. | 3.15 OE Cl | $3.206 E 01$ | 3.266 E OL | $3.370 E 01$ | 1.472 EL | 1．592E 01 | 1．594E 01 | 2.045 E Cl |
| 160. | $3.513 \mathrm{E} \quad 01$ | 3．575E O1 | 3.640 E 01 | 3.758 EL | $1.6700^{1} 1$ | 1．781E 01 | $1.784 E 01$ | 2．286t OL |
| 180. | 4.283 EPO | 4.355 E 01 | 4.435 E OL | 4.581 ECO | 2．C49E CI | 2.184 E 01 | 2.188 E O1 | 2．798E CI |
| 200. | 5．1C9E 01 | $5.192 E 01$ | 5.286 E 01 | $5.463 E 01$ | $2.457 E \quad 01$ | 2．618E 01 | $2.623 E 01$ | 3．349E O1 |
| 225. | $6.213 E 01$ | 6.310 EL | 6.424 E O1 | 6.642 E 01 | $3.006 E C 1$ | 3．201E 01 | 3．207E 01 | 4.088 ECL |
| 250. | $7.351 E 01$ | 7．5C3E 01 | 7．638E 01 | 7.901 EOL | $3.594 E O 1$ | $3.826 E 01$ | $3.833 E 01$ | $4.878 E 01$ |
| 275. | 8.637 ECL | 8．764E OL | 8．922E 01 | 9.234 E 01 | 4.218 Cl | 4.489 E 01 | $4.497 E 01$ | 5.716 ECl |
| 300. | 9.946 E OL | 1．009E 02 | 1．027E 02 | 1．063E 02 | $4.877 E 01$ | 5．188E 01 | 5．197E 01 | $6.598 E 01$ |

TABLE A2 protón ranges in grams per square centimeter as a function of energy in meve

## REFERENCES

1. Albert, R. D.; Welton, T. A.: A Simplified Theory of Neutron Attenuation and Its Application to Reactor Shield Design, WAPD-15, 1950.
2. Allen, F. J.; Futter, A.; Wright, W.: Neutron Reflection and Flux Versus Depth for Concrete, BRL Report No. 1189, 1963.
3. Allen, F. J.; Futter, A.; Wright, W. : Neutron Reflection and Flux Versus Depth for Iron, BRL Report No. 1199, 1963.
4. Allen, F. J.; Futter, A.; Wright, W.: Neutron Reflection and Flux Versus Depth for Water, BRL Report No. 1204, 1963.
5. Allen, R. I.; Dressler, A. J.; Perkins, J. F.; Price, H. C.; Shielding Problems in Manned Space Vehicles, NR-104, LockheedGeorgia Company, 1960.
6. Allen, R. I.; Bly, F. T.; Diressler, A. J.; Douglass, C. C.; Perkins, J. F.; Price, H. C.; Schofield, W. M.; Smith, E. C.: Shielding Problems in Manned Space Vehicles, NR-140, LockheedGeorgia Company, 1961.
7. Alsmiller, F. S.; Alsmiller, R. G., Jr.; Trubey, D. K.: Comparison of Primary Proton Dose With the Dose from Gamma Rays Produced by Inelastic Scattering of Solar Flare Protons, Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962, TID7652, Book 2.
8. Blatt, J. M.; Weisskopf, V. F.: Theoretical Nuclear Physics, John Wiley and Sons, New York, N. Y., 1952.
9. Brown, L. M.: Phys. Rev. 79, 297, 1950.
10. Burrell, M. O.; Cribbs, D. L.: A Monte Carlo Calculation of Neutron Penetration Through Iron Slabs, Vol. III, NR-82, Lockheed-Georgia Company, 1960.
11. Cameron, A. G. W.: Nuclear Radiation Widths, Can. J. Phys. 35, 666, 1957.
12. Capo, M. A.: Polynomial Approximation of Gamma Ray Buildup Factors for a Point Isotropic Source, APEX 510, 1958.
13. Case, K. M.; de Hoffman, F.; Placzek, G.: Introduction to the Theory of Neutron Diffusion, Vol. I, U. S. Government Printing Office, Washington, D. C., 1953.
14. Certaine, J.; Goldstein, H. ; Kalos, M. ; Mittleman, P. S.: Penetration of Neutrons From a Point Fission Source Through Carbon and Hydrocarbons, NDA 12-18, 1956.
15. Dostrovsky, I.; Fraenkel, F.; Friedlander, G.: Monte Carlo Calculations of Nuclear Evaporation Processes, III, Application of Low Energy Reactions, Phys. Rev. 116, 683, 1959.
16. Dostrovsky, I.; Fraenkel, F.; Winsberg, L.: Monte Carlo Calculations of Nuclear Evaporation Processes, IV, Spectra of Neutrons and Charged Particles from Nuclear Reactions, Phys. Rev. 118, 781, 1960.
17. Gibson, W. A.: Energy Removed from Proton and Neutron Beams by Tissue, ORNL 3260, 1962.
18. Goldstein, H.: Fundamental Aspects of Reactor Shielding, AddisonWesley, Reading, Mass., 1959.
19. Goldstein, H. ; Wilkins, J. E.: Calculations of the Penetration of Gamma Rays, NYO 3075, 1954.
20. Grodstein, G. W.: X-ray Attenuation Coefficients from 10 kev to 100 Mev , NBS Circular 583, 1957.
21. Gross, E.: The Absolute Yield of Low-Energy Neutrons from 90 Mev Proton Bombardment of Gold, Silver, Nickel, Aluminum, and Carbon, UCRL-3330, 1956.
22. Grover, J. R.: Effect of Competition Between Gamma Ray and Particle Emission on Excitation Functions, Phys. Rev. 123, 267, 1961.
23. Hill, Church; Mihelick: Rev. Mod. Phys. 30, 594, 1958.
24. Hönl, H.: Fur Dispersions Theorie der Roentgen Strahlen, Z. Physik 84, 1, 1933.
25. Koch, H. W.; Motz, J. W.: Bremsstrahlung Cross-Section Formulas and Related Data, Rev. Mod. Phys. 31, 920, 1959.
26. LeCouteur, K. J.; Long, D. W.: Neutron Evaporation and Level Densities in Excited Nuclei, Nuc. Phys. 13, 32, 1959.
27. LeCouteur, K. J.; Long, D. W.: Pairing Energy Effects in Excited Nuclei, Nuc. Phys. 14, 21, 1959-60.
28. LeCouteur, K. J.: The Evaporation Theory of Nuclear Disintegrations, Pro. Phys. Soc. (London) A 63, 259, 1950.
29. Liedtke, R. A.; Steinberg, H. A.: A Monte Carlo Code for Gamma Ray Transmission Through Laminated Slab Shields, WADC 58-80, 1958.
30. Madey, R.; Duneer, A. G., Jr.; Krieger, T. J.: Gamma Dose from Solar Flare Protons Incident on an Aluminum Shield; Presented at the Annual Meeting of the American Nuclear Society, June 18-21, 1962, Boston, Mass.
31. Metropolis, N.; Bivins, R.; Storm, M.; Turkevich, A.; Miller, J. M.; Friedlander, G.: Monte Carlo Calculations on Intranuclear Cascades, I, Low Energy Studies, Phys. Rev. 110, 185, 1958.
32. Metropolis, N.; Bivins, R.; Storm, M.; Miller, J. M.; Friedlander, G.; Turkevich, A.: Monte Carlo Calculations on Intranuclear Cascades, II, High Energy Studies and Pion Processes, Phys. Rev. 110, 204, 1958.
33. Mollenauer, J. F.: Effects of Angular Momentum on Gamma Ray Production in Compound Nucleus Reactions, UCRL9724, 1960.
34. Nelms, A. T.: Energy Loss and Range of Electrons and Positrons, NBS Circular 577, 1956.
35. Nuclear Data Sheets, National Academy of Science, National Research Council, Washington, D. C.
36. O'Brien, B. J.; Van Allen, J. A.; Laughlin, C. D.; Frank, L. A.: Absolute Electron Intensities in the Heart of the Earth's Outer Radiation Zone, J. Geo. Res. 67, 391, 1962.
37. Pik-Pichack, G. A.: Nucleon Emission by A Rotating Nucleus, Soviet Phys. - JETP 11, 557, 1960.
38. Schofield, W. M.; Smith, E. C.; Hill, C. W.: Shielding Problems in Manned Space Vehicles, ER-5997, Lockheed-Georgia Company, 1962.
39. Serber, R.: Nuclear Reactions at High Energies, Phys. Rev. 72, 114, 1947.
40. Sternheimer, R. M.: Range-Energy Relations for Protons in Be, C, $\mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$, and Air, Phys. Rev. 115, 137, 1959.
41. Sternheimer, R. M.: Density Effect for the Ionization Loss in Various Materials, Phys. Rev. 103, 511, 1956.
42. Sternheimer, R. M.: The Density Effect for the Ionization Loss in Various Materials, Phys. Rev. 88, 851, 1952.
43. Stolovy, A.; Harvey, J. A.: Radiation Widths of Levels in Nuclei Near Closed Shells, Phys. Rev. 108, 353, 1957.
44. Troubetzkoy, E. S.: Continuum Theory of Gamma Ray Spectra Following Inelastic Scattering, NDA2111-3, Vol. B, 1959.
45. Varshni, Y. P.: Comparison of Three Equations for the Spacing of Nuclear Levels, I1 Nuovo Cimento XXII, 145, 1961.
46. Wakatsuki, T.; Sugimoto, K.; Mizobuchi, A.: Gamma Rays from Several Elements Bombarded by 10 and 14 Mev Protons, J. Phys. Soc. Japan, 15, 1141, 1960.
47. Walske, M. C.: The Stopping Power of K-Electrons, Phys. Rev. 88, 1283, 1952.
48. Walske, M. C.: The Stopping Power of L-Electrons, Phys. Rev. 101, 940, 1956.
49. Wick, G. C.: Del Nuovo Cimento (9), 1, 302, 1943.
50. Vestine, E. H. ; et al: Description of the Earth's Main Magnetic Field and Its Secular Change 1905-1945, Carnegie Institute of Washington Pub. No. 578, Washington, D. C., 1947.
51. Fichtel, C. E.; Guss, D. E.; and Ogilvie, K. W.: Details of Individual Solar Particle Events, Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., Nov. 5-7, 1962, TID 7652, Book 1.

[^0]:    * See Page 129, Reference 38.

