6 research outputs found

    Development of an N-1 perfusion process and optimized scale-down models for implementation in a platform CHO cell culture manufacturing process

    Get PDF
    The use of N-1 perfusion, coupled with high-inoculum fed batch in CHO cell culture manufacturing processes, has been shown to increase volumetric productivity and shorten the duration of the fed-batch production phase. Implementation of N-1 perfusion as part of a platform process requires the ability to screen multiple clones and to optimize media and process parameters in a high-throughput manner. We have developed an N-1 perfusion process, along with a series of scale-down models for N-1 perfusion using shake flasks, cell culture tubes, and deep-well plates. Process parameters for scale-down models were optimized to maximize comparability of growth profiles and cell culture performance relative to 5L N-1 perfusion bioreactors. Scale-down models were used to inoculate fed-batch experiments in Ambr15 micro-bioreactors at high seeding density, in order to compare growth and productivity profiles to those observed in 5L bench scale bioreactors. Multiple cell lines derived from different CHO hosts were evaluated in order to verify the robustness of the scale-down models. Results demonstrated that cell growth and viability in the optimized scale-down models were comparable to those observed in 5L N-1 perfusion bioreactors. Furthermore, growth, productivity, and product quality profiles from high-inoculum fed-batch experiments were comparable regardless of inoculum source. Optimized scale down models of N-1 perfusion, coupled with Ambr15 fed-batch production micro-bioreactors, have now been integrated into a high-throughput and robust workflow to enable DOE and screening experiments for clone selection, media development and parameter optimization in a platform N-1 perfusion process for monoclonal antibody manufacturing

    Production of Novel Rapamycin Analogs by Precursor-Directed Biosynthesis

    No full text
    The natural product rapamycin, produced during fermentation by Streptomyces hygroscopicus, is known for its potent antifungal, immunosuppressive, and anticancer activities. During rapamycin biosynthesis, the amino acid l-pipecolate is incorporated into the rapamycin molecule. We investigated the use of precursor-directed biosynthesis to create new rapamycin analogs by substitution of unusual l-pipecolate analogs in place of the normal amino acid. Our results suggest that the l-pipecolate analog (±)-nipecotic acid inhibits the biosynthesis of l-pipecolate, thereby limiting the availability of this molecule for rapamycin biosynthesis. We used (±)-nipecotic acid in our precursor-directed biosynthesis studies to reduce l-pipecolate availability and thereby enhance the incorporation of other pipecolate analogs into the rapamycin molecule. We describe here the use of this method for production of two new sulfur-containing rapamycin analogs, 20-thiarapamycin and 15-deoxo-19-sulfoxylrapamycin, and report measurement of their binding to FKBP12

    LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization

    Get PDF
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes

    Overview of the medium and high frequency telescopes of the LiteBIRD space mission

    No full text
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD
    corecore