6,082 research outputs found

    Towards an integrated clinical framework for patient with shoulder pain

    Get PDF
    Background: Shoulder pain (SP) represents a common musculoskeletal condition that requires physical therapy care. Along the years, the usual evaluation strategies based on clinical tests and diagnostic imaging has been challenged. Clinical tests appear unable to clearly identify the structures that generated pain and interpretation of diagnostic imaging is still controversial. The current patho-anatomical diagnostic categories have demonstrated poor reliability and seem inadequate for the SP treatment. Objectives: The present paper aims to (1) describe the different proposals of clinical approach to SP currently available in the literature; to (2) integrate these proposals in a single framework in order to help the management of SP. Conclusion: The proposed clinical framework, based on a bio-psychosocial vision of health, integrates symptoms characteristics, pain mechanisms and expectations, preferences and psychosocial factors of patients that may guide physiotherapist to make a diagnostic triage and to choose the right treatment for the individual patient

    Simulation and performance of an artificial retina for 40 MHz track reconstruction

    Get PDF
    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz40\,\rm MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.Comment: Final draft of WIT proceedings modified according to JINST referee's comment

    The artificial retina for track reconstruction at the LHC crossing rate

    Full text link
    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz40\,\rm MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.Comment: 3 pages, 3 figures, ICHEP14. arXiv admin note: text overlap with arXiv:1409.089

    The artificial retina processor for track reconstruction at the LHC crossing rate

    Get PDF
    We present results of an R&D study for a specialized processor capable of precisely reconstructing, in pixel detectors, hundreds of charged-particle tracks from high-energy collisions at 40 MHz rate. We apply a highly parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature, and describe in detail an efficient hardware implementation in high-speed, high-bandwidth FPGA devices. This is the first detailed demonstration of reconstruction of offline-quality tracks at 40 MHz and makes the device suitable for processing Large Hadron Collider events at the full crossing frequency.Comment: 4th draft of WIT proceedings modified according to JINST referee's comments. 10 pages, 6 figures, 2 table

    A Specialized Processor for Track Reconstruction at the LHC Crossing Rate

    Full text link
    We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-ÎĽ\mus latencies when this algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout.Comment: Presented by G.Punzi at the conference on "Instrumentation for Colliding Beam Physics" (INSTR14), 24 Feb to 1 Mar 2014, Novosibirsk, Russia. Submitted to JINST proceeding

    Explicit and implicit own’s body and space perception in painful musculoskeletal disorders and rheumatic diseases: a systematic scoping review

    Get PDF
    Background: Pain and body perception are essentially two subjective mutually influencing experiences. However, in the field of musculoskeletal disorders and rheumatic diseases we lack of a comprehensive knowledge about the relationship between body perception dysfunctions and pain or disability. We systematically mapped the literature published about the topics of: a) somatoperception; b) body ownership; and c) perception of space, analysing the relationship with pain and disability. The results were organized around the two main topics of the assessment and treatment of perceptual dysfunctions. Methods: This scoping review followed the six-stage methodology suggested by Arksey and O’Malley. Ten electronic databases and grey literature were systematically searched. The PRISMA Extension for Scoping Reviews was used for reporting results. Two reviewers with different background, independently performed study screening and selection, and one author performed data extraction, that was checked by a second reviewer. Results: Thirty-seven studies fulfilled the eligibility criteria. The majority of studies (68%) concerned the assessment methodology, and the remaining 32% investigated the effects of therapeutic interventions. Research designs, methodologies adopted, and settings varied considerably across studies. Evidence of distorted body experience were found mainly for explicit somatoperception, especially in studies adopting self-administered questionnaire and subjective measures, highlighting in some cases the presence of sub-groups with different perceptual features. Almost half of the intervention studies (42%) provided therapeutic approaches combining more than one perceptual task, or sensory-motor tasks together with perceptual strategies, thus it was difficult to estimate the relative effectiveness of each single therapeutic component. Conclusions: To our knowledge, this is the first attempt to systematically map and summarize this research area in the field of musculoskeletal disorders and rheumatic diseases. Although methodological limitations limit the validity of the evidence obtained, some strategies of assessment tested and therapeutic strategies proposed represent useful starting points for future research. This review highlights preliminary evidence, strengths, and limitations of the literature published about the research questions, identifying key points that remain opened to be addressed, and make suggestions for future research studies. Body representation, as well as pain perception and treatment, can be better understood if an enlarged perspective including body and space perception is considered
    • …
    corecore