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1 Introduction

Charged-particle trajectories (tracks) are among the most physics-rich quantities typically avail-
able in collider experiments. Tracks encapsulate kinematic, lifetime, and charge information in
a handful of parameters, which are usually measured accurately, owing to the high precision of
current position-sensitive detectors. Track information is therefore attractive to discriminate in real
time the 10−3–10−5 fraction of events that are typically stored for further processing in high-rate
hadron collisions. However, real-time track reconstruction at high event rates is a major chal-
lenge that implies doing pattern recognition in the presence of large combinatorics and handling
a large information flow. This calls for highly parallel pattern-recognition algorithms that only
use the subset of information needed to efficiently reconstruct tracks. Devices dedicated to on-
line track-reconstruction in hadron collisions were employed since the early ’80s [1]. In the ’90s,
the Collider Detector at Fermilab (CDF) used pattern-matching algorithms implemented into field-
programmable gate-arrays (FPGA) to reconstruct two-dimensional tracks from clusters of aligned
hits in a large drift-chamber [2]. In 2001 the silicon vertex trigger [3] implemented fast and effi-
cient pattern-matching using a custom-made processor, the associative memory, that connected the
drift-chamber tracks with silicon-detector information and made available two-dimensional tracks
with offline-like resolution at 30–100 Hz within the 20 µs latency of the second level of CDF’s
three-stage trigger. Online track triggers, based on content-addressable memories, were also used
in the less demanding environment of proton-electron collisions [4]. Real-time track reconstruc-
tion would greatly benefit the experiments at the Large Hadron Collider (LHC). As of year 2020,
higher LHC energies and luminosities will severely challenge the experiments’ data acquisition
and event reconstruction capabilities. In addition, the large number of interactions per bunch cross-
ing, and the complexity of each event will reduce the discriminating power of usual experimental
signatures, such as charged leptons with a large momentum transverse to the beam (transverse mo-
mentum, pT ) or significant unbalances in total event pT . We realize a detailed bit-wise simulation
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of an implementation into FPGAs of a novel neurobiology-inspired pattern-recognition algorithm,
the artificial retina, which proves particularly suited for real-time tracking in high-luminosity LHC
conditions.

2 Artificial retina tracking

The artificial retina tracking algorithm [5] was inspired by the understanding of the mechanism of
visual receptive fields in the mammals’ eye [6], whose functionalities have recently been shown to
mirror those employed in high-speed digital data reduction [7]. Each neuron dedicated to vision
is tuned to recognize a specific simple shape on a specific region of the mammals’ retina, the
receptive field. The neuron response intensity to a visual stimulus is proportional to the degree of
similarity between the shape of the stimulus and the shape for which the neuron is tuned to. Hence,
each neuron reacts to the stimulus with different intensity. The brain extracts the first higher-
resolution information on the basic geometric features of the stimulus by interpolation between the
neuron responses, within a time of approximately 30 ms in humans. For a typical neuron firing
frequency of 1 kHz, this corresponds to approximately 30 processing cycles. At clock frequencies
of 1 GHz, this approximates the number of cycles/event required for achieving pattern recognition
at 40 MHz, and corresponds to a O(100) increase in processing efficiency over what attained by
present or foreseen dedicated devices [3, 8] and about a O(107) increase over unspecialized CPU-
like architectures.

The concept of a retina-inspired algorithm for track reconstruction is best understood using
a simple example: a detector consisting of parallel layers of position-sensitive sensors that only
measure one spatial coordinate, x (figure 1). The trajectories of charged particles in the absence of
magnetic field are straight lines identified by their angular coefficient m, and intercept q with the x
axis in an arbitrary (z,x) plane. We discretize the parameter space into cells that mirror the visual
receptive fields. The center of each cell identifies uniquely an ideal track in the detector space
that intersects detector layers in spatial points called receptors. Therefore the parameter-space cell
(mi,q j) maps into the set of receptors xi j

k , where k = 1, . . . ,n runs over the detector layers (figure 1).
This cell-receptor mapping is done for all cells of the track parameter space. Once the receptors
corresponding to all cells are known, the detector can be exposed to real tracks. The distance
sijkr = xk,r−xij

k of the receptors from the observed hits is computed and the response of the (mi,q j)
retina-cell is calculated,

Rij = ∑
k,r

exp
(
−

s2
ijkr

2σ2

)
, (2.1)

where xk,r are the coordinates of the rth hit on the detector layer k, while σ is a parameter of the
algorithm. Ri j represents the excitation of the receptive field. The total response of the retina is
obtained by calculating the excitation R of all cells. Tracks are identified by local maxima among
cells excited over a suitable threshold (figure 2).

In two dimensions, the algorithm bears analogies with the Hough transformation [9]. Gen-
eralization of the retina algorithm to the case of multiple dimensions, presence of magnetic field,
and so forth is conceptually straightforward [10]. After the track finding, determination of track
parameters is refined using the excitation centroid of the nearest cells around each local maximum.
This, along with the information contained in the smooth pattern-recognition response given by
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Figure 1. Schematic representation of the detector mapping. The parameter space (left panel) is discretized
into cells; to each cell corresponds a track that intercepts the detector layers in a determined sequence of
receptors (right panel).

Figure 2. Sketch of a simple event containing only two tracks and a few noise hits (left panel) and response
of the retina (right panel).

eq. (2.1), recovers resolution associated with the discretization of the parameter space and allows
for coarse retina granularities with no penalty in performance. The total number of cells is mainly
driven by the capability of separating similar tracks. The retina’s continuous, analog-like response
function and intrinsic capability of a fully parallel implementation down to hit level offer signifi-
cant additional advantages. However, there is a significant complexity leap in passing from a proof
of concept in a two-dimensional ideal case to a demonstration of feasibility in a real high-energy
physics experiment with commercially available electronic components.

3 Implementation

We implement the algorithm and simulate its performance in realistic conditions using the LHCb
detector upgraded for the 2020 high-luminosity operations as a use case [10]. The upgraded LHCb
detector [11] is a single-arm forward spectrometer covering polar angles from 0.8

◦
to 15.4

◦
from

the beam. The detector is designed to study particles containing bottom or charm quarks produced
in 14 TeV proton-proton collisions occurring every 25 ns at luminosities of 2–3× 1033 cm−2 s−1,
with 7.6–11.4 average interactions per crossing. We use the standard LHCb upgrade simulation,
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Figure 3. Longitudinal view of the tracker volume layout (not to scale). The dashed line indicates a track;
the parallel black lines indicate planes of silicon detectors used in the retina algorithm; the red line indicates
the primary (u, v) plane for track finding.

which includes detailed modeling of a number of experimental effects, including multiple scat-
tering, detector noise and so forth. The goal is to reconstruct, every 25 ns, 100–500 tracks, each
associated to 10–20 hits that are scattered over 10–20 parallel detector planes. For this study, we
choose an implementation of the retina that uses information from a small-angle telescope of ten
tracking planes made of (i) eight layers of microvertex silicon detectors based on pixel technol-
ogy [12] and installed in a volume free of magnetic field and (ii) two additional layers of microstrip
silicon detectors located upstream of the magnet [13] and immersed in its 0.05 T fringe field (fig-
ure 3). Such telescope has about 50 mrad of angular acceptance and covers about half of the total
tracking acceptance. Complementing it with an additional, similarly sized telescope at large angle
allows covering the full acceptance. More details on the configuration are in ref. [14]. Other con-
figurations are possible, e.g., including forward tracking detectors, depending on the target tracking
performance needed. The logic is implemented in VHDL language; detailed logic-gate placement
and simulation on the high-bandwidth Altera Stratix V device, model 5SGXEA7N2F45C2ES, is
achieved using Altera’s proprietary Quartus II software.

The realistic implementation of the algorithm poses two chief conceptual and technological
challenges. One challenge is achieving an efficient distribution of the hit information coming
from the detector to the processing engines that calculate the excitations. The need for a 40 MHz
throughput with several Tbit/s of input data flow makes this a nontrivial task. The other challenge
is performing pattern recognition quickly enough to remain within latency constraints. Solutions
to either issues typically depend on the geometry of the tracking layout. We find an efficient solu-
tion based on the LHCb geometry, in which straight-line tracks traverse the vertex detector before
being curved by the magnetic field and reach the downstream tracking stations. The idea is that
tracking performance sufficient for triggering can be achieved by restricting the core of the pattern-
recognition task to a region where the magnetic field is weak. This greatly simplifies the switching
and the pattern recognition tasks.
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Figure 4. Illustration of the device architecture.

The switching is facilitated because regions of physically contiguous detector-hits tend to map
into contiguous regions in track-parameter space that have limited overlap. Hence, a mapping
between detector hits and the parameters of possible tracks is obtained using simulation and results
are used to associate a zip-code with each possible detector hit. The zip-code is used by the nodes
of the switching network to properly route each hit thus avoiding the need to feed all hits to all
receptors.

The LHCb geometry allows factorizing the pattern recognition in the full five-dimensional
space of track parameters into two separate and simpler steps, independently of nonuniformities of
the magnetic field or detector misalignments. First, tracks are assumed to be straight lines origi-
nated from a single nominal interaction point and track-finding is performed in a two-dimensional
primary plane transverse to the beam, whose intersection which each track identifies the track’s
two primary cartesian parameters u and v. Then, the determination of the momentum p and the
coordinates of the origin of the charged particle d and z are treated as small perturbations of the
primary two-dimensional track. This is achieved by dividing the primary parameter space (u, v) in
a fine grid of cells and, for each, allow just for a small number of bins (lateral cells) in the three
remaining track parameters. A track is first identified as a cluster over threshold in the primary
plane and an estimate of all track parameters is then obtained by balancing the excitation found in
the lateral cells for each compact dimension. Figure 4 illustrates the architecture of the retina track
processor.

3.1 Switching network

We design an intelligent and economical information-delivery system that routes each hit in parallel
to only those engines for which such hit is likely to contribute a significant weight. Each hit comes
associated with a zip-code. At each stage of the switching network, each node reads the hit’s zip-
code and, based on a predetermined map loaded locally, routes the hit in parallel to the appropriate
nodes (or engines) of the following stage. Each hit is dispatched and duplicated as prescribed by the
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Figure 5. Two-way sorter (left) and 16× 16 switching network (right). Each of the network nodes are
two-way sorters; the 4-bit address is referred to as zip-code in the text.

map. For maximum efficiency, the switching logic is integrated in the same FPGA devices where
the processing engines are hosted. The switch consists of a network of nodes, whose basic building
blocks are two-way sorters (figure 5, left), with two input and two output data streams. Left and
right input data are merged and hits are dispatched to one or both outputs according to the zip-code
carried by the incoming hit. If a stall from downstream layers occurs, one or both input streams
are held. Such elementary building blocks are combined to build the needed network topology,
with the required switching capability (figure 5, right). A N ×N network requires N log2(N)/2
elements. The modular structure allows scalability and reconfiguration of the system if necessary,
and allows distributing the necessary addressing information over the whole network, storing the
information only at the nodes where it is required. The switching network occupies approximately
10% of the available logic in the Stratix V and completes its processing in 30 clock cycles.

3.2 The processing engine

Each cell in parameter space is defined as a logic module, the engine. Each hit is defined as a 41
bits word encoding the hit’s geometric coordinates, zip-code, and timestamp. The engine is imple-
mented as a clocked pipeline (figure 6). The intersections xk and yk for each layer k are stored in
a read-only memory. The layer identifier associated with each incoming hit selects the appropriate
set of xk and yk coordinates that are subtracted from the observed hit’s x̄ and ȳ coordinates. The
outcomes are squared and summed, and the result R is rounded. A sigma function, common to
all engines, is mapped into a (8× 256)-bit lookup table. The rounded R is used as address to the
lookup table. The outputs of the lookup table are accumulated for each hit of the event. The same
hit is cycled seven times in the engine logic, once for the calculation of the excitation corresponding
to the coordinates of the cell in the primary plane, and twice for each of the secondary track pa-
rameters, treated as perturbations. Hence, seven accumulators are defined for each cell. However,
the excitation intensities contributed by each hit to all track parameters are computed in parallel,
such that every engine is able to accept one hit every 20 ns approximately. Several variants of the
architecture are tested, from simple cases in which hits arrival is time-ordered to more complex
scenarios where simultaneous processing of up to 16 events is allowed. Once readout of an event
is completed, a word signaling the end of the event prompts each engine to share the content of
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Figure 6. Functional architecture of a receptor-field engine.

its central cell to the neighboring engines. All engines in parallel compare the excitation in their
central accumulator with the excitations received from the neighboring engines and raise a flag
if they identify a local maximum. Then, the coordinates and intensities of local maxima and the
intensities of the nearest neighbors are output for track-parameter extraction.

In this scheme, each Stratix V can host up to 900 engines, leaving approximately 25% of
logic available for other uses, including 15% of switching and the logic for center-of-excitation
calculation. This allows implementing a realistic retina-tracker based on a small-angle telescope
with about 22 500 engines in about 32 chips, and a complete system of two-telescopes with about
50 000 engines in 64 chips. The maximum clock frequency is 350 MHz from a full Modelsim
simulation.

3.3 Clustering

The logic that identifies the centers of excitation is a minor expansion. The clustering logic looks at
the maximum flag and, if not busy, requires from the engine the content of all accumulators and the
content of central accumulators of neighboring engines. These are used to calculate the track pa-
rameters as follows. The center-of-excitation calculation is factorized into two separate processes.
The calculation restricted to the track parameters in the plane transverse to the beam line (u,v)
implies finding the center of mass of a 3×3 square; the calculation relative to the remaining track
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Table 1. Event-processing time in units of clock cycles of the Stratix V FPGA.

Task Latency (cycles)
Switching in readout board 30
Switching fanout 6
Engine processing 70
Clustering 11
Output data 10
Total < 150

parameters (d, p,z) requires computing the center of mass of a 3× 3× 3 cube. Only a subset of
coordinates in each dimension is relevant for the final result; hence, the problem reduces to process-
ing a smaller number of values. The operation for each coordinate is u = u0/dk +(∑i, j uili, j)/∑ l,
where u0/dk is a global translation that depends on the absolute position of the engine and is not
calculated in real time, but stored in a lookup table. Two distinct weights are simultaneously pro-
duced for (u,v) and (d, p,z), respectively. In a possible architecture, the computation of the center
of excitation takes 11 clock cycles along with another 10 cycles for fanout with a logic that occupies
a fraction not larger than 15% of the Stratix V. To optimize resource sharing, a single center-of-
excitation unit can serve multiple engines. Simulations show that a scheme with a unit serving each
group of 12 engines is adequately sized for the hit occupancies expected. The search for the local
maximum and the center of excitation use local copies of the accumulators so that the incoming hit
flux is never stopped unless large time-fluctuations in the end event signal occur. In these cases the
incoming hits are kept on hold and stored in the switch trees.

3.4 Performance

The achieved tracking performance is comparable with that of the offline reconstruction, as detailed
in ref. [14]. The full simulation shows that the device sustains an input frequency of 40 MHz
of events, with the occupancy predicted by the full LHCb simulation, in the nominal luminosity
conditions of the 2020 upgrade, 2× 1033 cm−2 s−1. Contributions to latency are listed in table 1.
With the attained clock frequencies of up to 350 MHz, the latency for reconstructing online tracks is
less than 0.5 µs, which is likely to be negligible compared with other latencies typically present in
the DAQ. This makes the response of the device effectively immediate, thus making tracks available
right after the tracking detectors have been read out. Tests simulating higher track densities show
that the logic needed increases approximately linearly with the number of detector hits present in
the event.

4 Conclusions

We report on the first realistic implementation of the artificial retina algorithm for track recon-
struction. We simulate the full algorithm in high-end FPGA processors. We determine the timing,
occupancy, and ghost-rate performances of the algorithm using the conditions expected for the
LHCb detector upgraded for 2020 high-luminosity conditions, as a benchmark. The algorithm
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Table 2. Average retina occupancies and ghost-track reconstruction rates in two scenarios of instantaneous
luminosities. As in table 1, ‘cluster’ refers to local excitations in the retina, not silicon-detector clusters.

2×1033 cm−2 s−1 3×1033 cm−2 s−1

Number of hits 880 1220
Number of clusters (over thrsh) 121 223
Number of hits per engine 1.3 1.95
Ghost rate 0.08 0.12

reconstructs tracks with offline-like efficiencies and resolutions [14] within a latency of less than
0.5 µs. This is 400 times faster than any existing or foreseen device used in HEP. The observed
latency is negligible with respect to other latencies present in the LHCb data acquisition system and
makes the retina tracker to appear to DAQ as an additional detector that directly outputs tracks. This
is the first demonstration of online reconstruction of tracks with offline-quality at 40 MHz [10, 14].
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