1,500 research outputs found

    Polymer adhesion: first-principles calculations of the adsorption of organic molecules onto Si surfaces

    Get PDF
    The structures and energetics of organic molecules adsorbed onto clean and H-passivated Si(001)-(2×\times1) surfaces have been calculated using density functional theory. For benzene adsorbed on the clean Si surface the tight-bridge structure was found to be stable and the butterfly structure metastable. Both carbonic acid H2_2CO3_3 and propane C3_3H8_8 dissociate on contact with the surface. Passivation of the Si surface with H-atoms has a dramatic effect on the surface properties. The passivated surface is very inert and the binding energy of all the molecules is very weak.Comment: 8 pages, 13 figure

    A hierarchical dualscale study of bisphenol-A-polycarbonate on a silicon surface : structure, dynamics and impurity diffusion

    Get PDF
    A previously developed and studied coarse-grained model is used to investigate the properties of bisphenol-A-polycarbonate (BPA-PC) in contact with the Si(001)-(2 x 1) surface. The surface interaction potentials are based on density functional calculations. Both a smooth wall potential and a site-dependent wall potential were used to represent the surface. For both types of surface potential it was found that only the chain ends adsorb and the density profiles and conformations in each case are similar. The site-dependent surface slows the dynamics of the polymer at the interface by an order of magnitude compared to the bulk dynamics for the chain lengths considered. The diffusion of non-adsorbing impurity particles for both surface potentials was investigated and the concentration and dynamics of the impurity particles were analysed

    Quantized evolution of the plasmonic response in a stretched nanorod

    Full text link
    Quantum aspects, such as electron tunneling between closely separated metallic nanoparticles, are crucial for understanding the plasmonic response of nanoscale systems. We explore quantum effects on the response of the conductively coupled metallic nanoparticle dimer. This is realized by stretching a nanorod, which leads to the formation of a narrowing atomic contact between the two nanorod ends. Based on first-principles time-dependent density-functional-theory calculations, we find a discontinuous evolution of the plasmonic response as the nanorod is stretched. This is especially pronounced for the intensity of the main charge-transfer plasmon mode. We show the correlation between the observed discontinuities and the discrete nature of the conduction channels supported by the formed atomic-sized junction.Comment: Main text: 6 pages, 2 figures; Supplemental Material: 5 pages, 4 figure

    Comment on "Binding of hydrogen molecules by a transition-metal ion"

    Get PDF
    A Comment on the Letter by Niu, Rao, and Jena Phys. Rev. Lett. 68, 2277 (1992).Peer reviewe

    Atomic-scale modeling of the ion-beam-induced growth of amorphous carbon

    Get PDF
    The results of a detailed molecular-dynamics study of the growth of amorphous carbon (a−C) are reported. Carbon atoms with kinetic energies between 10 and 150 eV are deposited on a−C surface originating from bulk a−C. Earlier simulation results of an optimal energy window at 40–70 eV are confirmed. Additionally, it is found that the growth rate is at maximum at around 40 eV. At low implantation energies (Ebeam≈10 eV), the growth of amorphous carbon takes place on the surface. At higher energies, the growth proceeds increasingly in the subsurface region by global film expansion and single atom diffusion towards the surface. Scattering events (e.g., the deposited atom does not adsorb to the surface) at intermediate energies Ebeam≈100 eV result in a densification of the growing film. Moreover, at Ebeam≈150 eV, nonpermanent diamond formation is observed.Peer reviewe

    Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets

    Full text link
    We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate that the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.Comment: 11 pages, 6 figure

    Fast convergence to equilibrium for long-chain polymer melts using a MD/continuum hybrid method

    Get PDF
    Effective and fast convergence toward an equilibrium state for long-chain polymer melts is realized by a hybrid method coupling molecular dynamics and the elastic continuum. The required simulation time to achieve the equilibrium state is reduced drastically compared with conventional equilibration methods. The polymers move on a wide range of the energy landscape due to large-scale fluctuation generated by the elastic continuum. A variety of chain structures is generated in the polymer melt which results in the fast convergence to the equilibrium state.Comment: 13 page

    Kohn-Sham decomposition in real-time time-dependent density-functional theory: An efficient tool for analyzing plasmonic excitations

    Full text link
    The real-time-propagation formulation of time-dependent density-functional theory (RT-TDDFT) is an efficient method for modeling the optical response of molecules and nanoparticles. Compared to the widely adopted linear-response TDDFT approaches based on, e.g., the Casida equations, RT-TDDFT appears, however, lacking efficient analysis methods. This applies in particular to a decomposition of the response in the basis of the underlying single-electron states. In this work, we overcome this limitation by developing an analysis method for obtaining the Kohn-Sham electron-hole decomposition in RT-TDDFT. We demonstrate the equivalence between the developed method and the Casida approach by a benchmark on small benzene derivatives. Then, we use the method for analyzing the plasmonic response of icosahedral silver nanoparticles up to Ag561_{561}. Based on the analysis, we conclude that in small nanoparticles individual single-electron transitions can split the plasmon into multiple resonances due to strong single-electron-plasmon coupling whereas in larger nanoparticles a distinct plasmon resonance is formed.Comment: 11 pages, 3 figure
    corecore