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Effective and fast convergence toward an equilibrium state for long-chain polymer melts is real-
ized by a hybrid method coupling molecular dynamics and the elastic continuum. The required
simulation time to achieve the equilibrium state is reduced compared with conventional equili-
bration methods. The polymers move on a wide range phase space due to large-scale fluctuation
generated by the elastic continuum. A variety of chain structures is generated in the polymer melt
which results in the fast convergence to the equilibrium state. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4759036]

I. INTRODUCTION

Atomistic simulations for polymers have been studied in-
tensively. Especially molecular dynamics (MD) calculations
for polymers in order to reveal the dynamical behavior of
the chain structure have been carried out. MD calculations
for long-chain polymers, however, have been limited by the
massive computational costs due to the very long relaxation
times of entangled long-chain polymer melts. According to
reptation theory, the relaxation time of an entangled polymer
melt consisting of chains with N monomers scales as N3. This
means that a prohibitively long simulation time is needed to
relax a dense polymer melt. Moreover, a complex system such
as an entangled polymer melt exhibits a huge number of local-
minimum energy states in the free energy surface. Energetic
barriers much larger than the thermal energies separate the
initial configurations from the final equilibrium states, which
leads to relaxation times far greater than currently accessible
computational resources allow.

The coarse-grained (CG) approach for polymer
molecules, in which multiple atoms are combined into
a large bead, enable us to extend the spatial and time scales
of the simulation. In particular, the time scales up to several
orders of magnitude from the atomistic level.1 The length of
the chain polymer is, however, limited to the order of 104

monomers even with the CG approach.2

A variety of method has been proposed for obtaining
well-equilibrated CG polymer. Auhl et al. used the initial
configuration reducing the density fluctuation and a double-
bridging algorithm4 for a MD calculation.3 They demon-
strated the effectiveness of their method in long-chain poly-
mer simulations. Gao proposed a method of polymer chain
generation by connecting the polymer to monomers, com-
bining with the relaxation of polymer conformations by MD
step.5 Perez et al. confirmed that the relaxation is performed
while the chains are generated and showed an applicabil-
ity of this method to complex polymers such as nanostruc-

tured polymer.6 Subramanian generated the well-equilibrated
polymer by affinely scaling the simulation box and adding
the beads along the contour of the chain, and applied it to
the cyclic polymers.7 Methods for overcoming the local en-
ergy minimum on the energy surface have been intensively
studied.8–12 The multicanonical MD method13 enables sam-
pling over a much larger phase space, and was applied to a
CG model of protein folding.14

In the present paper, MD simulations for long-chain poly-
mer melts are performed by a hybrid MD/continuum method,
in which the dynamics of the atoms is coupled with those of
the continuum degrees of freedom concurrently. This hybrid
method was originally proposed by our group, and it has been
applied to a simple one-dimensional system,15, 16 in which the
spring force of the continuum acts on the atomic chain sys-
tem and generates large-scale fluctuations and a variety of
atomic phonon modes in the atomic chain. In the present pa-
per, the hybrid method is applied to a polymer melt consisting
of long-chain polymers. We demonstrate that the large-scale
fluctuation induces a large number of states of the long-chain
polymers and leads to the fast convergence toward the final
equilibrium state. Our purpose is to show the result of ac-
celerating MD calculations using the MD/continuum hybrid
method and the effectiveness of this method for long-chain
polymer simulations.

II. METHOD

We describe a single polymer as a bead-spring chain in
which monomers of the polymer are represented by spherical
beads. The beads have an excluded volume described by the
repulsive force of the 12-6 Lennard Jones potential

ULJ(r) =
{

4ε{( σ
r

)12 − ( σ
r

)6 + 1
4 } r ≤ rc

0 r > rc

, (1)
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where the cutoff radius rc is set as 21/6σ . Each bead is con-
nected with the neighboring beads in the polymer chain via a
finite extensible nonlinear elastic (FENE) potential as

UFENE(r) =
{

−0.5kR2
0 ln(1 − (r/R0)2) r ≤ R0

∞ r > R0
, (2)

where k = 30ε/σ 2 and R0 = 1.5σ . The calculation is per-
formed using the software package ESPResSo.17

The above CG polymer model is connected with the elas-
tic continuum. Details of the MD/continuum hybrid method
are explained in Ref. 15, and here the procedure of the hybrid
method is only briefly explained. The elastic continuum sur-
rounds the MD cell including the CG polymer model and the
elastic stress acts on the MD cell. In the case of a constant-
pressure MD method,18 the constant pressure acts on the MD
cell. The constant pressure is replaced by the elastic stress
of the continuum in the hybrid method as shown in Fig. 1.
Since the present system is considered to be isotropic, the cu-
bic MD cell is under isotropic stress of the elastic continuum,
which is described by the springs as shown in Fig. 1. Accord-
ing to the procedure of the MD/continuum hybrid method,15

we can describe the Lagrangian functional L of the present
hybrid model consisting of N particles in the MD cell with
the volume V and the Ns springs as

L({si , ṡi}, V , V̇ , {uμ, u̇μ})

=
N∑

i=1

mV 2/3 ṡi · ṡi

2
− φ({si}, V )

+ QV̇ 2

2
− K

2
(V − V0 − u1)2 + Mu̇1

2

2

+
Ns∑

μ=2

Mu̇2
μ

2
− K(uμ−1 − uμ)2

2
, (3)

where si are the scaled coordinates of the particles, such that
the Cartesian positions r i are r i = V 1/3si . uμ are displace-
ments of the springs in volume units. m and M are the masses
of the particles and the springs, and Q is the inertial mass for
the motion of the volume V , which is also presented in the
standard constant-pressure MD method.18 φ is the potential
energy between the particles of the CG polymer model. The
fourth term K

2 (V − V0 − u1)2 corresponds to the elastic po-
tential energy of the first spring (μ = 1) as is illustrated in
Fig. 1(c). This energy depends on the volume V and the dis-
placement of this spring u1, in which K is the spring constant.
V0 corresponds to the volume under no displacement applied
on springs. The initial displacements and their velocities of
the springs uμ, u̇μ are set so as to apply the pressure on the
CG model. The displacement of terminal spring uNs is fixed.
The equations of the motion for the particles, volume, and the
springs are derived easily from the above Lagrangian

m
d ṡi

dt
= −V −2/3 ∂φ

∂si

− 2

3

V̇

V
mṡi , (4)

Q
dV̇

dt
= 1

3V

N∑
i=1

(
mV 2/3 ṡ2

i − si · ∂φ

∂si

)
− K(V − V0 − u1),

(5)

M
du̇μ

dt
=

⎧⎨
⎩

K(V − V0 − uμ) − K(uμ − uμ+1),

K(uμ−1 − uμ) − K(uμ − uμ+1),

(μ = 1)

(μ = 2, 3, . . . , Ns − 1).
(6)

In the equation of motion (5) for the volume V , the first two
terms on the right correspond to the internal pressure of the
CG polymer system, and the last term is the elastic force
caused by the adjacent spring (μ = 1). This equation plays a
role for connecting the CG polymer system of the MD cell to
the springs. The simultaneous equation of the degrees of {si},
V and {uμ} is integrated numerically and we obtain the time
convolution of the coordinations of the polymer, the volume
of the MD cell, and the displacement of the springs.

In this hybrid model, the springs are used as an elastic
bulk polymer. Five springs are used in the present model,
where each spring has the same elastic property as that of the
CG polymers in the MD cell. We derive the bulk modulus of
the polymer melt by using the constant-pressure MD method
and use this value as the spring constant K. Since each spring
is equivalent to the bulk polymer, the spring’s mass M should
be the total mass of all the polymers in the MD cell. The value
of M is, however, set to a considerably lighter value than the
total mass (about one tenth of the total mass) in the present

calculations. As will be mentioned in Sec. IV, the choice of
parameters such as mass and an initial velocity of the spring is
important to improve the convergence toward the equilibrium.
We choose a suitable value of M by doing several attempts to
get the best convergence.

We perform two different MD calculations starting from
a stretched polymer and from Gaussian chain with close to
correct end-to-end distance of polymer. For the case of ini-
tially stretched polymer, 10 CG polymer consisting of 400
beads are placed in the MD cell. In this case, we adopt a bend-
ing potential for the CG polymer defined by

Ubend (θ ) = kθ (1 − cos θ ), (7)

where θ is the angle between the neighboring bonds within
the polymer chain. We adopt small bending potential of
kθ = 0.25ε. The stretched chain structure has low potential
energy (for a fully stretched chain, Ubend(0) = 0) and we use
it as an initial configuration. It will be demonstrated that such
a stretched polymer with small bending potential relaxes dur-
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(a) (b)

V0 V

u1

uNs: fixed

uNs=0

u1=0

(c) 1=μ

SN=μ

FIG. 1. Schematic views of (a) a standard constant-pressure MD model and
(b) and (c) the hybrid model. (a) The polymer system consists of monomers
(open circle) in a cubic MD cell under an external constant pressure. (b) The
springs enclose the cubic MD cell and isotropic forces by the springs act on
the polymer system. (c) Schematic image of the hybrid model. On left-hand
side, no displacement is applied on springs, while on the right-hand, MD cell
is compressed by the springs. The displacement of the terminal spring (uNs )
is fixed.

ing finite temperature MD. Using this bending potential and
the average bond length 〈b〉 = 0.97 σ , the square root of end-
to-end distance of equilibrated polymer is derived to be 26.9
σ . For the case of initially Gaussian chains, 50 CG polymer
consisting of 500 beads are placed in the MD cell. In this case,
no bending potential in CG polymer is applied. The number
density of the CG polymer liquid is set to 0.85 σ−3 and the
temperature is set to 1.0 ε/kB for both cases. The time unit of
the calculation is τ = σ (m/ε)1/2. The integration of the equa-
tion of the motion is performed using a time step 0.006 τ .

To show the effectiveness of the hybrid method, we inves-
tigate the required simulation time to achieve the equilibrium
state. Conventional Andersen constant-pressure MD is per-
formed using the same initial configuration for the both cases
in order to compare it to the result of the hybrid method.

III. RESULTS

The single-chain structure is characterized by the end-
to-end distance R. The time convolutions of the calculated R
in the present MD calculations are monitored in Fig. 2 for
the case of the initially stretched chains, where the result ob-
tained by the conventional method is compared with that from
the hybrid method. In the conventional MD method, consid-
erably longer simulation time (t ∼ 1.0 × 106τ ) is needed to
obtain a stable value of R, which is in good agreement with
the analytical value R = 26.9σ . The long-chain polymer such
as the present model has very slow diffusion time and requires
a long simulation time to reach the relaxation using a conven-
tional MD method. In contrast, the R of the hybrid method is
fluctuating widely and rapidly converges toward the equilib-

10 0 10 1 10 2 10 3 10 4 10 5 10 6
0

100

200

300

Normal method
Hybrid method

Time (τ)

R
(σ

)

hybrid

FIG. 2. Time convolutions of the end-to-end distance R of polymer melts
obtained by the conventional method (broken line) and hybrid method (solid
line) for the case of initially stretched polymers. The calculation with the
hybrid method stops at t = 2.0 × 104τ , and the constant-pressure MD calcu-
lation is continued after that.

rium value. After a simulation with the hybrid method until
t = 2.0 × 104τ , the calculation is continued with the conven-
tional MD method. The required time to reach stable value
of R using the hybrid method is t ∼ 104τ , which is about one
hundredth of the time required using the conventional method.

Snapshots of a single polymer obtained by the conven-
tional method and by the hybrid method are shown in Fig. 3.
We start the MD calculations using the same initial configura-
tion of a long stretched polymer as shown in Fig. 3 (t = 0). At
t = 4.5 × 104τ , the polymer configuration of the conventional
method still has a stretched chain structure, while that of the
hybrid method has a entangled structure. In general, a flexible
polymer such as the present polymer model has an entangled
structure in the equilibrium state. This entangled structure can
be obtained at t = 4.5 × 104τ by the hybrid method, while
we manage to obtain it only at t ∼ 106τ by the conventional
method.

For the case of initially stretched polymers, we derive the
mean square internal distance 〈R(n)2〉, averaged over all inter-
nal distances n = |i − j| along all the polymer chains, where
i < j ∈ [1, N] are the monomer indices. It is shown in Fig. 4

τ4105.4 ×=t

τ5105.4 ×=t τ6100.1 ×=t

τ0=t

Conventional method

Hybrid method

FIG. 3. Time convolution of a single polymer configuration obtained by the
conventional method and hybrid method for the case of initially stretched
polymers. This is one polymer chosen from ten polymers in the simulation
system. Guides in figure indicate the length of 10 σ .
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1 10 100 1000

1

2

3

n

<
R

2 (n
)>

/n

 t=4.5*104τ 
 t=4.5*105τ 
 t=1.0*106τ 
 t=4.5*104τ with hybrid

FIG. 4. Mean square internal distances obtained by the conventional method
(broken lines) and hybrid method (solid line) for the case of initially stretched
polymers. For the conventional method, results at three different times
(t = 4.5 × 104τ , 4.5 × 105τ , and 1.0 × 106τ ) are shown.

that the curve of 〈R(n)2〉/n obtained by the hybrid method at
t = 4.5 × 104τ already reaches to that at final stage t = 1.0
× 106τ by the conventional method. The curve obtained by
the conventional method at t = 4.5 × 104τ reflects from
the initial stretched structure, and even at t = 4.5 × 105τ ,
it remains in the polymer chain structure. This initial struc-
ture still remains even after long-time MD run and it leads to
small deformations of polymer for long distance (n > 200)
at final stages of the conventional method and hybrid method
(open circles and solid circles in Fig. 4). It is, however, clearly
shown from the time convolution of polymer configuration
and 〈R(n)2〉 that the polymer melts go to the equilibrium and
that convergence toward the equilibrium is accelerated by our
hybrid method.

In order to compare our method with the method devel-
oped by Auhl et al., we also studied a system in which the
starting state consists of Gaussian chains with close to the
correct end-to-end distance as determined from short chain
simulations. Here, we studied the same model as Auhl et al.
performed, 50 fully flexible chains of length N = 500. Initial
configuration for the CG polymers with correct end-to-end
distance is generated according to so-called “fast push-off”
method.3 As is seen in Fig. 5, initial polymer has deforma-
tion at intermediate and long distance (n = 10−500), and it
remains at t = 2.4 × 105τ performed by a conventional MD
calculation. Auhl et al. mentioned that order of 106τ time are

1 5 10 50 100 500 1000

1

1.5

2

  t=2.4*105 τ  with conventional method
  t=2.4*105 τ  with hybrid method
  t=3.6*105 τ  with hybrid method
  target function defined by Auhl  et al.
  Initial configuration

<
R

2 (n
)>

/n

n

FIG. 5. Mean square internal distances obtained using correct end-to-end
distance of polymer as an initial configuration.

required to obtain equilibrium states for such long polymers
by normal MD method.

Using the above initial configuration with correct end-
to-end distance, we perform the hybrid calculation. We use
the hybrid method till t = 1.0 × 105τ and the calculation is
continued with a standard constant-pressure MD method. It is
seen from Fig. 5 that at t = 2.4 × 105τ , the initial deformation
becomes relax rapidly, and after additional 1.2 × 105τ MD
run, 〈R(n)2〉/n fits nicely with the “target function” defined
by Auhl et al. as the signature of well-equilibrated polymer
melts. We can obtain a fully equilibrium state for a long-chain
polymer with MD run for order of 105τ time. It is again shown
from this result that the convergence toward the equilibrium is
improved by the hybrid calculation. Auhl reported that the or-
der of 105τ was taken to obtain the equilibrium states for the
same length polymers using the double-bridging method. Ef-
fectiveness for the convergence by our hybrid method is com-
parable to that calculated by the double-bridging method.

IV. DISCUSSION

The fluctuation of the end-to-end distance R of the hy-
brid method means that the chain structure of the polymer is
fluctuating widely during the simulation. The time convolu-
tion of the internal pressure of the CG polymer system and
the volume of the MD cell is shown in Fig. 6. It can be seen in
Fig. 6 that the internal pressure and the system volume are
widely fluctuating. It can also be seen that the time convolu-
tion of the volume is out of phase with the internal pressure.
These large-scale fluctuations arise in the polymer system;
low pressure induces a large expansion of the volume, and
a large pressure compresses the system. Hence, the number
density of the system is also widely fluctuating. This situation
is different from that in the calculation by constant-pressure
MD method, in which the constant pressure applies on the
atomic system and the system is fluctuated so as to balance the
internal pressure with the external constant pressure. The dif-
ference between our hybrid model and the Andersen’s model
has been discussed in our previous study.15

0

5000

10000

15000

20000

V
ol

um
e 

( σ
3 )

17000 18000 19000 20000 21000 22000

10
20
30
40
50

time (τ )

P
re

ss
ur

e 
( ε

/σ
3 )

FIG. 6. Time convolution of the internal pressure and the volume of the MD
cell for the case of initially stretched polymers. The calculation by the hybrid
method stops at t = 20 000τ , and the constant-pressure MD calculation is
continued after that.
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0.1 0.2 0.3 0.4
-6

-5

-4

-3

-2

-1

0

cosθ

lo
g 

P

 conventional (t=1.0*104τ)
 conventional (t=1.0*106τ)
 hybrid (t=1.0*104τ)

FIG. 7. The probability distribution functions of cos θ for the hybrid method
together with the conventional method for the case of initially stretched
polymers.

Due to the large-scale fluctuations, a large variety of
chain structures are generated and the trajectory of the poly-
mer spreads over a wide phase space. For the case of the ini-
tially stretched polymers, the CG polymer has a bending po-
tential, which is associated with the chain structure and bond
angle θ of polymer as shown in Eq. (7). The averaged cos θ

among all polymers is derived from the bending potential and
its probability distribution is obtained by sampling from the
MD ensemble over a time period of 1000 τ . The probability
distribution function (PDF) of cos θ is shown in Fig. 7. In the
conventional method, the PDF of bond angle for polymers
is limited in narrow range, which means that few variety of
chain structure of polymer is generated. In contrast, a much
wider range of PDF is covered by the hybrid method. The
wide range of the bond angle indicates a generation of a large
variety of chain structures and its trajectory is over a much
wider phase space than that of the conventional method. This
situation also occurs for the case of initially Gaussian chains
with no bending potential.

The fluctuations in the polymer system are generated
by the vibrations of the springs. The motion of the springs
is connected with that of the MD cell as is described by
Eq. (5). The large-scale dynamics of the elastic continuum
leads to the fluctuation of the CG polymer system, large va-
riety of chain structure and results in the fast convergence to
the equilibrium. If only small stress of the elastic continuum
acts on the CG polymer system, the convergence is not im-
proved. We reduce initial velocities of springs in the hybrid
calculation. It is confirmed in Fig. 8 that a small vibration of
the springs induces small fluctuations in the polymer system,
and the convergence is not improved compared to the conven-
tional method in this case.

The convergence depends not only on the amplitude of
the fluctuations as just mentioned, but also on the time scale
of the fluctuations. The heavy weight of the springs introduces
slow dynamics of the springs and redundant fluctuation in the
polymers, and it does not lead to effective convergence to-
ward the equilibrium state. Light weight springs induce quick
fluctuation in the polymers, which avoids structural relax-
ation of the polymers. In the present calculations, we set the
mass of springs so as to get best convergence as mentioned in
Sec. II. The effectiveness of the convergence is closely associ-
ated with the time scale of fluctuation as well as its amplitude.

0 1000 2000 3000

0

20

40

0

20

time  (τ)

R
( σ

)

P
re

ss
ur

e 
(ε

/σ
2 )

 convntional
 hybrid (small)
 hybrid (large)

FIG. 8. Time convolution of the end-to-end distance R and the internal pres-
sure. The results are obtained with a smaller system than in the present calcu-
lations, where a single polymer consists of 100 coarse-grain monomers and
stretched polymers are used as a initial configuration. The gray line indicates
the result obtained in the case of a small fluctuation by the hybrid method,
while the solid line indicates the result in the case of large-scale fluctuations.

The relation between fluctuation and convergence is of inter-
est and an interesting topic for further research.

We use two different initial states for the polymer sys-
tems, the stretched polymers and the Gaussian chains with
correct end-to-end distance. The end-to-end distance for the
case of initially stretched polymer clearly shows fast conver-
gence, however, this initial structure remains even after long-
time MD calculations using the hybrid method. Though many
varieties of chain structure are generated under the large-scale
fluctuations, the initially stretched structures survives for a
long time and considerably affects the convergence toward the
fully equilibrated state.

The initially Gaussian chain has the end-to-end distance
of an equilibrated polymer. For this case, the initial deforma-
tions in polymers relax rapidly with the hybrid method and
a fully equilibrated state was achieved at the end of the sim-
ulations. The fully equilibrated state can be obtained effec-
tively using both a proper initial configuration and the hy-
brid method, in which the effectiveness of the convergence is
comparable to the double-bridging method3 as mentioned in
Sec. III. In the double-bridging method, a variety of chain
structures are generated by using artificial treatments such
as cutting chain polymer and switching partial chains. In the
hybrid method, polymer chains are not cut nor is there any
partial chain exchange, but large-scale fluctuations are intro-
duced via the coupled spring system, which generate a variety
of chain structure, as just mentioned.

V. CONCLUSION

We couple a CG polymer model and an elastic contin-
uum using the hybrid method. The polymer melt consisting
of the CG polymers is simulated and it is shown that fast con-
vergence toward the equilibrium state of the polymer melt
is achieved. The elastic continuum of the hybrid model acts
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on the polymer system and produces large-scale fluctuations.
The fluctuations allow the polymer system to sample over a
much wider phase space than the conventional method, induc-
ing a variety of polymer states, and leads to fast convergence
toward the equilibrium. For both the studied initial configu-
rations, stretched chains and Gaussian chains with the correct
end-to-end distance, the hybrid method enables significantly
quicker equilibration compared to classical MD. For the sec-
ond case starting with chains of the correct end-to-end dis-
tance, the performance of the hybrid method is comparable to
the double-bridging method of Auhl et al.3

In our previous studies,15, 16 a one-dimensional model
was calculated by the hybrid method and the large-scale
fluctuation causes the generation of a variety of phonons
in the particle system. The phonons obtained by the hybrid
model reproduced those by large-scale all-atom calculations.
It was shown that the hybrid model enables us to extend the
spatial scale to much larger values. In the present study, the
hybrid method is applied to the long-chain polymer that has
very slow diffusion dynamics. The required simulation time
to reach the equilibrium state of the polymer melt is reduced.
The present hybrid model thus enables us to reach a much
wider time scale than that by the conventional MD method.

Although the present model is simple, the hybrid method
can be applied to more realistic and complex systems such
as polycarbonate19 and protein molecules. The equilibrium
structure and various properties at finite temperatures can be
obtained with reasonable computational cost.
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