247 research outputs found

    Super switching and control of in-plane ferroelectric nanodomains in strained thin films

    Get PDF
    With shrinking device sizes, controlling domain formation in nanoferroelectrics becomescrucial. Periodic nanodomains that self-organize into so-called ‘superdomains’ have beenrecently observed, mainly at crystal edges or in laterally confined nanoobjects. Here we showthat in extended, strain-engineered thin films, superdomains with purely in-plane polarizationform to mimic the single-domain ground state, a new insight that allows a priori design ofthese hierarchical domain architectures. Importantly, superdomains behave like strain-neutralentities whose resultant polarization can be reversibly switched by 90 deg, offering promisingperspectives for novel device geometries

    An adaptive, real-time cadence algorithm for unconstrained sensor placement

    Get PDF
    This paper evaluates a new and adaptive real-time cadence detection algorithm (CDA) for unconstrained sensor placement during walking and running. Conventional correlation procedures, dependent on sensor position and orientation, may alternately detect either steps or strides and consequently suffer from false negatives or positives. To overcome this limitation, the CDA validates correlation peaks as strides using the Sylvester's criterion (SC). This paper compares the CDA with conventional correlation methods.22 volunteers completed 7 different circuits (approx. 140 m) at three gaits-speeds: walking (1.5 m s- 1), running (3.4 m s- 1), and sprinting (5.2 and 5.7 m s- 1), disturbed by various gait-related activities. The algorithm was simultaneously evaluated for 10 different sensor positions. Reference strides were obtained from a foot sensor using a dedicated offline algorithm.The described algorithm resulted in consistent numbers of true positives (85.6-100.0%) and false positives (0.0-2.9%) and showed to be consistently accurate for cadence feedback across all circuits, subjects and sensors (mean ± SD: 98.9 ± 0.2%), compared to conventional cross-correlation (87.3 ± 13.5%), biased (73.0 ± 16.2) and unbiased (82.2 ± 20.6) autocorrelation procedures.This study shows that the SC significantly improves cadence detection, resulting in robust results for various gaits, subjects and sensor positions

    Giant tunnel electroresistance with PbTiO3 ferroelectric tunnel barriers

    Get PDF
    The persistency of ferroelectricity in ultrathin films allows their use as tunnel barriers. Ferroelectric tunnel junctions are used to explore the tunneling electroresistance effect—a change in the electrical resistance associated with polarization reversal in the ferroelectric barrier layer—resulting from the interplay between ferroelectricity and quantum-mechanical tunneling. Here, we use piezoresponse force microscopy and conductive-tip atomic force microscopy at room temperature to demonstrate the resistive readout of the polarization state through its influence on the tunnel current in PbTiO3 ultrathin ferroelectric films. The tunnel electroresistance reaches values of 50 000% through a 3.6 nm PbTiO3 film.

    Using Real-World Data to Guide Ustekinumab Dosing Strategies for Psoriasis: A Prospective Pharmacokinetic-Pharmacodynamic Study.

    Get PDF
    Variation in response to biologic therapy for inflammatory diseases, such as psoriasis, is partly driven by variation in drug exposure. Real-world psoriasis data were used to develop a pharmacokinetic/pharmacodynamic (PK/PD) model for the first-line therapeutic antibody ustekinumab. The impact of differing dosing strategies on response was explored. Data were collected from a UK prospective multicenter observational cohort (491 patients on ustekinumab monotherapy, drug levels, and anti-drug antibody measurements on 797 serum samples, 1,590 measurements of Psoriasis Area Severity Index (PASI)). Ustekinumab PKs were described with a linear one-compartment model. A maximum effect (Emax ) model inhibited progression of psoriatic skin lesions in the turnover PD mechanism describing PASI evolution while on treatment. A mixture model on half-maximal effective concentration identified a potential nonresponder group, with simulations suggesting that, in future, the model could be incorporated into a Bayesian therapeutic drug monitoring "dashboard" to individualize dosing and improve treatment outcomes

    A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the Remote Early Detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial

    Get PDF
    OBJECTIVES: It is currently thought that most-but not all-individuals infected with SARS-CoV-2 develop symptoms, but the infectious period starts on average 2 days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: • The algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) • The algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. TRIAL DESIGN: The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. The study will start with an initial learning phase (maximum of 3 months), followed by period 1 (3 months) and period 2 (3 months). Subjects entering the study at the end of the recruitment period may directly start with period 1 and will not be part of the learning phase. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in either period 1 or period 2 and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either sequence 1 (experimental condition first) or sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. PARTICIPANTS: The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6500 normal-risk individuals and 3500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal and self-sampling serology and PCR kits. More information on the study can be found in www.covid-red.eu . During recruitment, subjects will be invited to visit the COVID-RED web portal. After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria: Inclusion criteria: • Resident of the Netherlands • At least 18 years old • Informed consent provided (electronic) • Willing to adhere to the study procedures described in the protocol • Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, the study team should be notified) • Be able to read, understand and write Dutch Exclusion criteria: • Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) • Current suspected (e.g. waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) • Participating in any other COVID-19 clinical drug, vaccine or medical device trial (self-reported) • Electronic implanted device (such as a pacemaker; self-reported) • Pregnant at the time of informed consent (self-reported) • Suffering from cholinergic urticaria (per the Ava bracelet's user manual; self-reported) • Staff involved in the management or conduct of this study INTERVENTION AND COMPARATOR: All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronize it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 h, the Ava COVID-RED app's underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess the intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). Note that both algorithms will also instruct to seek testing when any SARS-CoV-2 symptoms are reported in line with those defined by the Dutch national institute for public health and the environment 'Rijksinstituut voor Volksgezondheid en Milieu' (RIVM) guidelines. MAIN OUTCOMES: The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with the self-reported Daily Symptom Diary data and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional twenty secondary and exploratory objectives which address, among others, infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2-infected participants and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (between month 0 and 3.5 months after the start of subject recruitment), at the end of the learning phase (month 3; note that this sampling moment is skipped if a subject entered the study at the end of the recruitment period), period 1 (month 6) and period 2 (month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the learning phase is positive, or if the subject entered the study at the end of the recruitment period, and samples collected at the end of period 1 will only be analysed if the sample collected at the end of period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called COVID-positive mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using the data collected in period 2 (months 6 through 9). Within this period, serology tests (before and after period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. RANDOMIZATION: All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimental condition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in approximately equal numbers of high-risk and normal-risk individuals between the sequences. BLINDING (MASKING): In this study, subjects will be blinded to the study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED app for the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on the data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 20,000 subjects will be recruited and randomized 1:1 to either sequence 1 (experimental condition followed by control condition) or sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6500 normal-risk and 3500 high-risk individuals per sequence. TRIAL STATUS: Protocol version: 3.0, dated May 3, 2021. Start of recruitment: February 19, 2021. End of recruitment: June 3, 2021. End of follow-up (estimated): November 2021 TRIAL REGISTRATION: The Netherlands Trial Register on the 18th of February, 2021 with number NL9320 ( https://www.trialregister.nl/trial/9320 ) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol

    Impact of immunosuppressive treatment and type of SARS-CoV-2 vaccine on antibody levels after three vaccinations in patients with chronic kidney disease or kidney replacement therapy

    Get PDF
    Background. Patients with chronic kidney disease (CKD) or kidney replacement therapy demonstrate lower antibody levels after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination compared with healthy controls. In a prospective cohort, we analysed the impact of immunosuppressive treatment and type of vaccine on antibody levels after three SARS-CoV-2 vaccinations. Methods. Control subjects (n = 186), patients with CKD G4/5 (n = 400), dialysis patients (n = 480) and kidney transplant recipients (KTR) (n = 2468) were vaccinated with either mRNA-1273 (Moderna), BNT162b2 (Pfizer-BioNTech) or AZD1222 (Oxford/AstraZeneca) in the Dutch SARS-CoV-2 vaccination programme. Third vaccination data were available in a subgroup of patients (n = 1829). Blood samples and questionnaires were obtained 1 month after the second and third vaccination. Primary endpoint was the antibody level in relation to immunosuppressive treatment and type of vaccine. Secondary endpoint was occurrence of adverse events after vaccination. Results. Antibody levels after two and three vaccinations were lower in patients with CKD G4/5 and dialysis patients with immunosuppressive treatment compared with patients without immunosuppressive treatment. After two vaccinations, we observed lower antibody levels in KTR using mycophenolate mofetil (MMF) compared with KTR not using MMF [20 binding antibody unit (BAU)/mL (3-113) vs 340 BAU/mL (50-1492), P &lt; .001]. Seroconversion was observed in 35% of KTR using MMF, compared with 75% of KTR not using MMF. Of the KTR who used MMF and did not seroconvert, eventually 46% seroconverted after a third vaccination. mRNA-1273 induces higher antibody levels as well as a higher frequency of adverse events compared with BNT162b2 in all patient groups. Conclusions. Immunosuppressive treatment adversely affects the antibody levels after SARS-CoV-2 vaccination in patients with CKD G4/5, dialysis patients and KTR. mRNA-1273 vaccine induces a higher antibody level and higher frequency of adverse events.</p

    Influence of personalized extended interval dosing on the natalizumab wearing-off effect - a sub-study of the NEXT-MS trial

    Get PDF
    Background and objectives: Wearing-off symptoms during natalizumab treatment in multiple sclerosis are characterized by an increase of MS-related symptoms prior to natalizumab administration. The influence of extended interval dosing (EID) on wearing-off symptoms are important to consider, as this might cause hesitancy in initiating or continuing EID. Methods: Participants of the NEXT-MS trial, in which treatment intervals are adjusted based on drug concentrations, were divided into two groups: an extended group containing participants with at least one week of additional interval extension, and a group with a fixed interval during the trial (range 4–7 weeks). Changes in the occurrence, frequency, onset, and severity of wearing-off symptoms were evaluated. Results: 255 participants were included (extended group n = 171, fixed group n = 84). The odds on occurrence of wearing-off symptoms in the extended group did not increase after extending the treatment interval. Additional analyses for frequency, onset, and severity of wearing-off symptoms showed no changes over time. Mean decrease in natalizumab drug concentration did not influence the frequency of wearing-off symptoms. Discussion: Wearing-off symptoms were not reinforced by further extending the natalizumab interval. Wearing-off symptoms might increase in a minority of patients after EID, although our data support the view that wearing-off symptoms appear to be unrelated to the decrease in natalizumab trough drug concentrations.</p

    Post COVID-19 condition imposes significant burden in patients with advanced chronic kidney disease:A nested case-control study

    Get PDF
    Background: The burden of post COVID-19 condition (PCC) is not well studied in patients with advanced kidney disease. Methods: A large prospective cohort of SARS-CoV-2 vaccinated patients with chronic kidney disease stages G4–G5 (CKD G4/5), on dialysis, and kidney transplant recipients (KTR) were included. Antibody levels were determined after vaccination. Presence of long-lasting symptoms was assessed in patients with and without prior COVID-19 and compared using logistic regression. In patients with prior COVID-19, PCC was defined according to the WHO definition. Results: Two hundred sixteen CKD G4/5 patients, 375 dialysis patients, and 2005 KTR were included. Long-lasting symptoms were reported in 204/853 (24%) patients with prior COVID-19 and in 297/1743 (17%) patients without prior COVID-19 (aOR: 1.45 (1.17–1.78)], P &lt; 0.001). PCC was prevalent in 29% of CKD G4/5 patients, 21% of dialysis patients, and 24% of KTR. In addition, 69% of patients with PCC reported (very) high symptom burden. Odds of PCC was lower per 10-fold increase in antibody level after vaccination (aOR 0.82 [0.70–0.96], P = 0.01) and higher in case of COVID-19 related hospital admission (aOR 4.64 [2.61–8.25], P = 0.003). Conclusions: CKD G4/5 patients, dialysis patients, and KTR are at risk for PCC with high symptom burden after SARS-CoV-2 vaccination, especially if antibody levels are low and in case of hospitalization due to COVID-19.</p

    Bimodal crystallization at polymer-fullerene interfaces

    Get PDF
    The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM-polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals impedes the growth of micron-sized, needle-like PCBM crystals. A combination of neutron reflectivity and GIXD measurements, also allows us to observe the establishment of a liquid-liquid equilibrium composition-profile between the PCBM layer and a polymer-rich layer, before crystallization occurs. While the interfacial composition-profile is independent of polymer-film-thickness, the growth-rate of nanoscale PCBM crystals is significantly larger for thinner polymer films. A similar thickness-dependent behavior is observed for different molecular weights of entangled polymer. We suggest that the behavior may be related to enhanced local-polymer-chain-mobility in nanocomposite thin-films
    • …
    corecore