71 research outputs found

    Notes sur les phlébotomes de l'Aïr (Niger)

    Get PDF
    238 phlébotomes appartenant à 7 espèces ont été récoltés dans 4 stations du massif de l'Aïr au Niger. #Phlebotomus bergeroti était l'espèce dominante sur appât animal (âne) et dans les récoltes domiciliaires. Une attention spéciale est portée à #P. alexandri, vecteur de kala-azar dans d'autres foyers. (Résumé d'auteur

    Molecular Characterization of a Fus3/Kss1 Type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1

    Get PDF
    Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst

    Multiple Plant Surface Signals are Sensed by Different Mechanisms in the Rice Blast Fungus for Appressorium Formation

    Get PDF
    Surface recognition and penetration are among the most critical plant infection processes in foliar pathogens. In Magnaporthe oryzae, the Pmk1 MAP kinase regulates appressorium formation and penetration. Its orthologs also are known to be required for various plant infection processes in other phytopathogenic fungi. Although a number of upstream components of this important pathway have been characterized, the upstream sensors for surface signals have not been well characterized. Pmk1 is orthologous to Kss1 in yeast that functions downstream from Msb2 and Sho1 for filamentous growth. Because of the conserved nature of the Pmk1 and Kss1 pathways and reduced expression of MoMSB2 in the pmk1 mutant, in this study we functionally characterized the MoMSB2 and MoSHO1 genes. Whereas the Momsb2 mutant was significantly reduced in appressorium formation and virulence, the Mosho1 mutant was only slightly reduced. The Mosho1 Momsb2 double mutant rarely formed appressoria on artificial hydrophobic surfaces, had a reduced Pmk1 phosphorylation level, and was nonresponsive to cutin monomers. However, it still formed appressoria and caused rare, restricted lesions on rice leaves. On artificial hydrophilic surfaces, leaf surface waxes and primary alcohols-but not paraffin waxes and alkanes- stimulated appressorium formation in the Mosho1 Momsb2 mutant, but more efficiently in the Momsb2 mutant. Furthermore, expression of a dominant active MST7 allele partially suppressed the defects of the Momsb2 mutant. These results indicate that, besides surface hydrophobicity and cutin monomers, primary alcohols, a major component of epicuticular leaf waxes in grasses, are recognized by M. oryzae as signals for appressorium formation. Our data also suggest that MoMsb2 and MoSho1 may have overlapping functions in recognizing various surface signals for Pmk1 activation and appressorium formation. While MoMsb2 is critical for sensing surface hydrophobicity and cutin monomers, MoSho1 may play a more important role in recognizing rice leaf waxes

    A genome-wide identification and comparative analysis of the lentil MLO genes

    Get PDF
    Revista electrónica on linePowdery mildew is a widespread fungal plant disease that can cause significant losses in many crops. Some MLO genes (Mildew resistance locus O) have proved to confer a durable resistance to powdery mildew in several species. Resistance granted by the MLO gene family members has prompted an increasing interest in characterizing these genes and implementing their use in plant breeding. Lentil (Lens culinaris Medik.) is a widely grown food legume almost exclusively consumed as dry seed with an average world production of 4.5 million tons. Powdery mildew causes severe losses on certain lentil cultivars under particular environmental conditions. Data mining of the lentil CDC Redberry draft genome allowed to identify up to 15 gene sequences with homology to known MLO genes, designated as LcMLOs. Further characterization of these gene sequences and their deduced protein sequences demonstrated conformity with key MLO protein characteristics such as the presence of transmembrane and calmodulin binding domains, as well as that of other conserved motifs. Phylogenetic and other comparative analyses revealed that LcMLO1 and LcMLO3 are the most likely gene orthologs related to powdery mildew response in other species, sharing a high similarity with other known resistance genes of dicot species, such as pea PsMLO1 and Medicago truncatula MtMLO1 and MtMLO3. Sets of primers were designed as tools to PCR amplify the genomic sequences of LcMLO1 and LcMLO3, also to screen lentil germplasm in search of resistance mutants. Primers were used to obtain the complete sequences of these two genes in all of the six wild lentil relatives. Respective to each gene, all Lens sequences shared a high similarity. Likewise, we used these primers to screen a working collection of 58 cultivated and 23 wild lentil accessions in search of length polymorphisms present in these two genes. All these data widen the insights on this gene family and can be useful for breeding programs in lentil and close related species.S

    Functional Characterization of an Aspergillus fumigatus Calcium Transporter (PmcA) that Is Essential for Fungal Infection

    Get PDF
    Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca+2-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca+2-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5′-CACAGCCAC-3′ and 5′-CCCTGCCCC-3′ sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -B and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The ΔpmcA and ΔpmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the ΔcalA and ΔcrzA mutant strains. However, only the A. fumigatus ΔpmcA was avirulent in the murine model of invasive pulmonary aspergillosis

    Análisis molecular de la patogénesis en Fusarium oxysporum

    Get PDF
    El proceso de infección del hongo Fusarium oxysporum es complejo y requiere algunos mecanismos bien regulados: 1) el reconocimiento de señales de la planta, 2) la adhesión a la superficie de la raíz y la diferenciación de hifas de penetración, 3) la invasión del córtex de la raíz y la degradación de barreras físicas hasta llegar al tejido vascular, 4) adaptación al entorno adverso del tejido vegetal, incluyendo la tolerancia a compuestos antifúngicos, 5) la proliferación de las hifas y producción de conidios en los vasos del xilema y, 6) la secreción de factores de virulencia tales como enzimas, péptidos o fitotoxina

    MoSfl1 Is Important for Virulence and Heat Tolerance in Magnaporthe oryzae

    Get PDF
    The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae
    corecore