16 research outputs found

    Forested Riparian Zones Provide Important Habitat for Fish in Urban Streams

    Get PDF
    Riparian zones form a boundary between aquatic and terrestrial ecosystems, with disproportionate influences on food web dynamics and ecosystem functioning in both habitats. However, riparian boundaries are frequently degraded by human activities, including urbanization, leading to direct impacts on terrestrial communities and indirect changes that are mediated through altered connectivity with adjacent aquatic ecosystems. We investigated how riparian habitat influences fish communities in an urban context. We electrofished nine urban site pairs with and without forested riparian buffers, alongside an additional 12 sites that were located throughout the river networks in the Oslo Fjord basin, Norway. Brown trout (Salmo trutta) were the dominant fish species. Riparian buffers had weak positive effects on fish densities at low to moderate levels of catchment urbanization, whereas fish were absent from highly polluted streams. Subtle shifts in fish size distributions suggested that riparian buffers play an important role in metapopulation dynamics. Stable isotopes in fish from buffered reaches indicated dietary shifts, pointing to the potential for a greater reliance on terrestrial-sourced carbon. Combining these results, we postulate that spatially-mediated ontogenetic diet shifts may be important for the persistence of brown trout in urban streams. Our results show that using a food web perspective is essential in understanding how riparian buffers can offset impacts in urban catchments

    A Bayesian Belief Network learning tool integrates multi-scale effects of riparian buffers on stream invertebrates

    Get PDF
    Riparian forest buffers have multiple benefits for biodiversity and ecosystem services in both freshwater and terrestrial habitats but are rarely implemented in water ecosystem management, partly reflecting the lack of information on the effectiveness of this measure. In this context, social learning is valuable to inform stakeholders of the efficacy of riparian vegetation in mitigating stream degradation. We aim to develop a Bayesian belief network (BBN) model for application as a learning tool to simulate and assess the reach-and segment-scale effects of riparian vegetation properties and land use on instream invertebrates. We surveyed reach-scale riparian conditions, extracted segment-scale riparian and subcatchment land use information from geographic information system data, and collected macroinvertebrate samples from four catchments in Europe (Belgium, Norway, Romania, and Sweden). We modelled the ecological condition based on the Average Score Per Taxon (ASPT) index, a macroinvertebrate-based index widely used in European bioassessment, as a function of different riparian variables using the BBN modelling approach. The results of the model simulations provided insights into the usefulness of riparian vegetation attributes in enhancing the ecological condition, with reach-scale riparian vegetation quality associated with the strongest improvements in ecological status. Specifically, reach-scale buffer vegetation of score 3 (i.e. moderate quality) generally results in the highest probability of a good ASPT score (99-100%). In contrast, a site with a narrow width of riparian trees and a small area of trees with reach-scale buffer vegetation of score 1 (i.e. low quality) predicts a high probability of a bad ASPT score (74%). The strengths of the BBN model are the ease of interpretation, fast simulation, ability to explicitly indicate uncertainty in model outcomes, and interactivity. These merits point to the potential use of the BBN model in workshop activities to stimulate key learning processes that help inform the management of riparian zones

    Assessing the Benefits of Forested Riparian Zones: A Qualitative Index of Riparian Integrity Is Positively Associated with Ecological Status in European Streams

    Get PDF
    Developing a general, predictive understanding of ecological systems requires knowing how much structural and functional relationships can cross scales and contexts. Here, we introduce the CROSSLINK project that investigates the role of forested riparian buffers in modified European landscapes by measuring a wide range of ecosystem attributes in stream-riparian networks. CROSSLINK involves replicated field measurements in four case-study basins with varying levels of human development: Norway (Oslo Fjord), Sweden (Lake Malaren), Belgium (Zwalm River), and Romania (Arge River). Nested within these case-study basins include multiple, independent stream-site pairs with a forested riparian buffer and unbuffered section located upstream, as well as headwater and downstream sites to show cumulative land-use impacts. CROSSLINK applies existing and bespoke methods to describe habitat conditions, biodiversity, and ecosystem functioning in aquatic and terrestrial habitats. Here, we summarize the approaches used, detail protocols in supplementary materials, and explain how data is applied in an optimization framework to better manage tradeoffs in multifunctional landscapes. We then present results demonstrating the range of riparian conditions present in our case-study basins and how these environmental states influence stream ecological integrity with the commonly used macroinvertebrate Average Score Per Taxon (ASPT) index. We demonstrate that a qualitative index of riparian integrity can be positively associated with stream ecological status. This introduction to the CROSSLINK project shows the potential for our replicated study with its panoply of ecosystem attributes to help guide management decisions regarding the use of forested riparian buffers in human-impacted landscapes. This knowledge is highly relevant in a time of rapid environmental change where freshwater biodiversity is increasingly under pressure from a range of human impacts that include habitat loss, pollution, and climate change

    Litter Decomposition as an Indicator of Stream Ecosystem Functioning at Local-to-Continental Scales

    Get PDF
    RivFunction is a pan-European initiative that started in 2002 and was aimed at esta- blishing a novel functional-based approach to assessing the ecological status of rivers. Litter decomposition was chosen as the focal process because it plays a central role in stream ecosystems and is easy to study in the field. Impacts of two stressors that occur across the continent, nutrient pollution and modified riparian vegetation, were exam- ined at >200 paired sites in nine European ecoregions. In response to the former, decomposition was dramatically slowed at both extremes of a 1000-fold nutrient gra- dient, indicating nutrient limitation in unpolluted sites, highly variable responses across Europe in moderately impacted streams, and inhibition via associated toxic and addi- tional stressors in highly polluted streams. Riparian forest modification by clear cutting or replacement of natural vegetation by plantations (e.g. conifers, eucalyptus) or pasture produced similarly complex responses. Clear effects caused by specific riparian distur- bances were observed in regionally focused studies, but general trends across different types of riparian modifications were not apparent, in part possibly because of important indirect effects. Complementary field and laboratory experiments were undertaken to tease apart the mechanistic drivers of the continental scale field bioassays by addressing the influence of litter, fungal and detritivore diversity. These revealed generally weak and context-dependent effects on decomposition, suggesting high levels of redundancy (and hence potential insurance mechanisms that can mitigate a degree of species loss) within the food web. Reduced species richness consistently increased decomposition variability, if not the absolute rate. Further field studies were aimed at identifying impor- tant sources of this variability (e.g. litter quality, temporal variability) to help constrain ranges of predicted decomposition rates in different field situations. Thus, although ïżŒmany details still need to be resolved, litter decomposition holds considerable potential in some circumstances to capture impairment of stream ecosystem functioning. For instance, species traits associated with the body size and metabolic capacity of the con- sumers were often the main driver at local scales, and these were often translated into important determinants of otherwise apparently contingent effects at larger scales. Key insights gained from conducting continental scale studies included resolving the appar- ent paradox of inconsistent relationships between nutrients and decomposition rates, as the full complex multidimensional picture emerged from the large-scale dataset, of which only seemingly contradictory fragments had been seen previously

    Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning

    Get PDF
    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Forested riparian buffers change the taxonomic and functional composition of stream invertebrate communities in agricultural catchments

    Get PDF
    Riparian zones form the interface between stream and terrestrial ecosystems and play a key role through their vegetation structure in determining stream biodiversity, ecosystem functioning and regulating human impacts, such as warming, nutrient enrichment and sedimentation. We assessed how differing riparian vegetation types influence the structural and functional composition (based on species traits) of stream invertebrate communities in agricultural catchments. We characterized riparian and stream habitat conditions and sampled stream invertebrate communities in 10 independent site pairs, each comprising one “unbuffered” reach lacking woody riparian vegetation and a second downstream reach with a woody riparian buffer. Forested riparian buffers were associated with greater shading, increased gravel content in stream substrates and faster flow velocities. We detected changes in invertebrate taxonomic composition in response to buffer presence, with an increase in sensitive Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa and increases in key invertebrate species traits, including species with preference for gravel substrates and aerial active dispersal as adults. Riparian vegetation independently explained most variation in taxa composition, whereas riparian and instream habitat together explained most variation in functional composition. Our results highlight how changes in stream invertebrate trait distributions may indirectly reflect differences in riparian habitat, with implications for stream health and cross-ecosystem connectivity

    Riparian Vegetation Structure Influences Terrestrial Invertebrate Communities in an Agricultural Landscape

    Get PDF
    Stream and terrestrial ecosystems are intimately connected by riparian zones that support high biodiversity but are also vulnerable to human impacts. Landscape disturbances, overgrazing, and diffuse pollution of agrochemicals threaten riparian biodiversity and the delivery of ecosystem services in agricultural landscapes. We assessed how terrestrial invertebrate communities respond to changes in riparian vegetation in Romanian agricultural catchments, with a focus on the role of forested riparian buffers. Riparian invertebrates were sampled in 10 paired sites, with each pair consisting of an unbuffered upstream reach and a downstream reach buffered with woody riparian vegetation. Our results revealed distinct invertebrate community structures in the two site types. Out of 33 invertebrate families, 13 were unique to either forested (6) or unbuffered (7) sites. Thomisidae, Clubionidae, Tetragnathidae, Curculionidae, Culicidae, and Cicadidae were associated with forested buffers, while Lycosidae, Chrysomelidae, Staphylinidae, Coccinellidae, Tettigoniidae, Formicidae, and Eutichuridae were more abundant in unbuffered sites. Despite statistically equivocal results, invertebrate diversity was generally higher in forested riparian buffers. Local riparian attributes significantly influenced patterns in invertebrate community composition. Our findings highlight the importance of local woody riparian buffers in maintaining terrestrial invertebrate diversity and their potential contribution as a multifunctional management tool in agricultural landscapes

    Small Patches of Riparian Woody Vegetation Enhance Biodiversity of Invertebrates

    Get PDF
    Patches of riparian woody vegetation potentially help mitigate environmental impacts of agriculture and safeguard biodiversity. We investigated the effects of riparian forest on invertebrate diversity in coupled stream-riparian networks using a case study in the Zwalm river basin (Flanders, Belgium). Agriculture is one of the main pressures in the basin and riparian forest is limited to a number of isolated patches. Our 32 study sites comprised nine unshaded “unbuffered” sites which were paired with nine shaded “buffered” sites on the same stream reach, along with five ‘least-disturbed’ sites and nine downstream sites. We sampled water chemistry, habitat characteristics and stream and riparian invertebrates (carabid beetles and spiders) at each site. Three methods were used to quantify riparian attributes at different spatial scales: a visually-assessed qualitative index, quantitative estimates of habitat categories in six rectangular plots (10 × 5 m) and geographic information system (GIS)-derived land cover data. We investigated relationships between invertebrates and riparian attributes at different scales with linear regression and redundancy analyses. Spiders and carabids were most associated with local riparian attributes. In contrast, aquatic macroinvertebrates were strongly influenced by the extent of riparian vegetation in a riparian band upstream (100–300 m). These findings demonstrate the value of quantifying GIS-based metrics of riparian cover over larger spatial scales into assessments of the efficacy of riparian management as a complement to more detailed local scale riparian assessments in situ. Our findings highlight the value of even small patches of riparian vegetation in an otherwise extensively disturbed landscape in supporting biodiversity of both terrestrial and freshwater invertebrates and emphasize the need to consider multiple spatial scales in riparian management strategies which aim to mitigate human impacts on biodiversity in stream-riparian networks

    Small Patches of Riparian Woody Vegetation Enhance Biodiversity of Invertebrates

    No full text
    Patches of riparian woody vegetation potentially help mitigate environmental impacts of agriculture and safeguard biodiversity. We investigated the effects of riparian forest on invertebrate diversity in coupled stream-riparian networks using a case study in the Zwalm river basin (Flanders, Belgium). Agriculture is one of the main pressures in the basin and riparian forest is limited to a number of isolated patches. Our 32 study sites comprised nine unshaded “unbuffered” sites which were paired with nine shaded “buffered” sites on the same stream reach, along with five ‘least-disturbed’ sites and nine downstream sites. We sampled water chemistry, habitat characteristics and stream and riparian invertebrates (carabid beetles and spiders) at each site. Three methods were used to quantify riparian attributes at different spatial scales: a visually-assessed qualitative index, quantitative estimates of habitat categories in six rectangular plots (10 × 5 m) and geographic information system (GIS)-derived land cover data. We investigated relationships between invertebrates and riparian attributes at different scales with linear regression and redundancy analyses. Spiders and carabids were most associated with local riparian attributes. In contrast, aquatic macroinvertebrates were strongly influenced by the extent of riparian vegetation in a riparian band upstream (100–300 m). These findings demonstrate the value of quantifying GIS-based metrics of riparian cover over larger spatial scales into assessments of the efficacy of riparian management as a complement to more detailed local scale riparian assessments in situ. Our findings highlight the value of even small patches of riparian vegetation in an otherwise extensively disturbed landscape in supporting biodiversity of both terrestrial and freshwater invertebrates and emphasize the need to consider multiple spatial scales in riparian management strategies which aim to mitigate human impacts on biodiversity in stream-riparian networks
    corecore