37 research outputs found
Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots
Key to our project flora robotica is the idea of creating a bio-hybrid system
of tightly coupled natural plants and distributed robots to grow architectural
artifacts and spaces. Our motivation with this ground research project is to
lay a principled foundation towards the design and implementation of living
architectural systems that provide functionalities beyond those of orthodox
building practice, such as self-repair, material accumulation and
self-organization. Plants and robots work together to create a living organism
that is inhabited by human beings. User-defined design objectives help to steer
the directional growth of the plants, but also the system's interactions with
its inhabitants determine locations where growth is prohibited or desired
(e.g., partitions, windows, occupiable space). We report our plant species
selection process and aspects of living architecture. A leitmotif of our
project is the rich concept of braiding: braids are produced by robots from
continuous material and serve as both scaffolds and initial architectural
artifacts before plants take over and grow the desired architecture. We use
light and hormones as attraction stimuli and far-red light as repelling
stimulus to influence the plants. Applied sensors range from simple proximity
sensing to detect the presence of plants to sophisticated sensing technology,
such as electrophysiology and measurements of sap flow. We conclude by
discussing our anticipated final demonstrator that integrates key features of
flora robotica, such as the continuous growth process of architectural
artifacts and self-repair of living architecture.Comment: 16 pages, 12 figure
Effects of deslorelin acetate on plasma testosterone concentrations in captive yellow-bellied sliders (Trachemys scripta sp.)
In Europe, the yellow-bellied slider (Trachemys scripta sp.) is a non-native species in competition with native freshwater turtles. Research on contraception could be useful to control the captive population. Identifying a method of contraception in chelonians would potentially help to control aggression in other chelonian species. The objective of the current study was to evaluate the effects of a single 4.7-mg deslorelin acetate implant on plasma testosterone concentrations in yellow-bellied sliders (Trachemys scripta sp.). Eleven adult male yellow-bellied sliders were used for the study. Males from the treatment group (n = 6) received a 4.7-mg deslorelin acetate implant, whereas males from the control group (n = 5) did not receive any treatment. All individuals were housed under the same environmental conditions. Testosterone plasma concentrations of the control group and the treatment group were measured at six time points (T0–T6) between April and September. No difference between the control group and the deslorelin treatment group was observed at T0, T2, T3, T4, T5 or T6. However, mean plasma testosterone concentration was significantly higher in the treatment group than in the control group at T1. This suggests that treatment with a 4.7-mg deslorelin acetate implant has a transient stimulatory effect on the anterior pituitary in yellowbellied sliders without a negative feedback on testosterone production. Further studies with a higher dosage of deslorelin acetate are needed to draw conclusions on its contraceptive effect
Flora Robotica – Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids
Besides the life-as-it-could-be driver of artificial life research there is also the concept of extending natural life by creating hybrids or mixed societies that are built from both natural and artificial components. In this paper, we motivate and present the research program of the project flora robotica. We present our concepts of control, hardware de-sign, modeling, and human interaction along with preliminary experiments. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce archi-tectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow for new functions of plants and robots. They also create novel design opportunities for an architecture that fuses the design and construction phase. The bio-hybrid is an example of mixed societies between ‘hard artificial and ‘wet natural life, which enables an interaction between natural and artificial ecologies. They form an embodied, self-organizing, and distributed cognitive system which is supposed to grow and develop over long periods of time resulting in the creation of meaningful architectural structures. A key idea is to assign equal roles to robots and plants in order to create a highly integrated, symbiotic system. Besides the gain of knowledge, this project has the objective to cre-ate a bio-hybrid system with a defined function and application – growing architectural artifacts
Development and evaluation of the modiolar research array – multi-centre collaborative study in human temporal bones
OBJECTIVE: Multi-centre collaborative study to develop and refine the design of a prototype thin perimodiolar cochlear implant electrode array and to assess feasibility for use in human subjects. STUDY DESIGN: Multi-centre temporal bone insertion studies. MATERIALS AND METHODS: The modiolar research array (MRA) is a thin pre-curved electrode that is held straight for initial insertion with an external sheath rather than an internal stylet. Between November 2006 and February 2009, six iterations of electrode design were studied in 21 separate insertion studies in which 140 electrode insertions were performed in 85 human temporal bones by 12 surgeons. These studies aimed at addressing four fundamental questions related to the electrode concept, being: (1) Could a sheath result in additional intra-cochlear trauma? (2) Could a sheath accommodate variations in cochlea size and anatomies? (3) Could a sheath be inserted via the round window? and (4) Could a sheath be safely removed once the electrode had been inserted? These questions were investigated within these studies using a number of evaluation techniques, including X-ray and microfluoroscopy, acrylic fixation and temporal bone histologic sectioning, temporal bone microdissection of cochlear structures with electrode visualization, rotational tomography, and insertion force analysis. RESULTS: Frequent examples of electrode rotation and tip fold-over were demonstrated with the initial designs. This was typically caused by excessive curvature of the electrode tip, and also difficulty in handling of the electrode and sheath. The degree of tip curvature was progressively relaxed in subsequent versions with a corresponding reduction in the frequency of tip fold-over. Modifications to the sheath facilitated electrode insertion and sheath removal. Insertion studies with the final MRA design demonstrated minimal trauma, excellent perimodiolar placement, and very small electrode dimensions within scala tympani. Force measurements in temporal bones demonstrated negligible force on cochlear structures with angular insertion depths of between 390 and 450°. CONCLUSION: The MRA is a novel, very thin perimodiolar prototype electrode array that has been developed using a systematic collaborative approach. The different evaluation techniques employed by the investigators contributed to the early identification of issues and generation of solutions. Regarding the four fundamental questions related to the electrode concept, the studies demonstrated that (1) the sheath did not result in additional intra-cochlear trauma; (2) the sheath could accommodate variations in cochlea size and anatomies; (3) the sheath was more successfully inserted via a cochleostomy than via the round window; and (4) the sheath could be safely removed once the electrode had been inserted
Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. comparison between models and observations
[1] The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity
Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens
Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens