8 research outputs found

    Head and neck paragangliomas: clinical and molecular genetic classification

    Get PDF
    Head and neck paragangliomas are tumors arising from specialized neural crest cells. Prominent locations are the carotid body along with the vagal, jugular, and tympanic glomus. Head and neck paragangliomas are slowly growing tumors, with some carotid body tumors being reported to exist for many years as a painless lateral mass on the neck. Symptoms depend on the specific locations. In contrast to paraganglial tumors of the adrenals, abdomen and thorax, head and neck paragangliomas seldom release catecholamines and are hence rarely vasoactive. Petrous bone, jugular, and tympanic head and neck paragangliomas may cause hearing loss. The internationally accepted clinical classifications for carotid body tumors are based on the Shamblin Class I–III stages, which correspond to postoperative permanent side effects. For petrous-bone paragangliomas in the head and neck, the Fisch classification is used. Regarding the molecular genetics, head and neck paragangliomas have been associated with nine susceptibility genes: NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127. Hereditary HNPs are mostly caused by mutations of the SDHD gene, but SDHB and SDHC mutations are not uncommon in such patients. Head and neck paragangliomas are rarely associated with mutations of VHL, RET, or NF1. The research on SDHA, SDHAF2 and TMEM127 is ongoing. Multiple head and neck paragangliomas are common in patients with SDHD mutations, while malignant head and neck paraganglioma is mostly seen in patients with SDHB mutations. The treatment of choice is surgical resection. Good postoperative results can be expected in carotid body tumors of Shamblin Class I and II, whereas operations on other carotid body tumors and other head and neck paragangliomas frequently result in deficits of the cranial nerves adjacent to the tumors. Slow growth and the tendency of hereditary head and neck paragangliomas to be multifocal may justify less aggressive treatment strategies

    Efficacy and Toxicity of Different Chemotherapy Protocols for Concurrent Chemoradiation in Non-Small Cell Lung Cancer—A Secondary Analysis of the PET Plan Trial

    Get PDF
    (1) Background: The optimal chemotherapy (CHT) regimen for concurrent chemoradiation (cCRT) is not well defined. In this secondary analysis of the international randomized PET-Plan trial, we evaluate the efficacy of different CHT. (2) Methods: Patients with inoperable NSCLC were randomized at a 1:1 ratio regarding the target volume definition and received isotoxically dose-escalated cCRT using cisplatin 80 mg/m2 (day 1, 22) and vinorelbin 15 mg/m2 (day 1, 8, 22, 29) (P1) or cisplatin 20 mg/m2 (day 1–5, 29–33) and vinorelbin 12.5 mg/m2 (day 1, 8, 15, 29, 36, 43) (P2) or carboplatin AUC1 (day 1–5, 29–33) and vinorelbin 12.5 mg/m2 (day 1, 8, 15, 29, 36, 43) (P3) or other CHT at the treating physician’s discretion. (3) Results: Between 05/2009 and 11/2016, 205 patients were randomized and 172 included in the per-protocol analysis. Patients treated in P1 or P2 had a better overall survival (OS) compared to P3 (p = 0.015, p = 0.01, respectively). Patients treated with carboplatin had a worse OS compared to cisplatin (HR 1.78, p = 0.03), but the difference did not remain significant after adjusting for age, ECOG, cardiac function creatinine and completeness of CHT. (4) Conclusions: Carboplatin doublets show no significant difference compared to cisplatin, after adjusting for possibly relevant factors, probably due to existing selection bias

    Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET

    No full text
    Abstract Background To assess the effect of radiochemotherapy (RCT) on proposed tumour hypoxia marker transverse relaxation time (T2*) and to analyse the relation between T2* and 18F-misonidazole PET/CT (FMISO-PET) and 18F-fluorodeoxyglucose PET/CT (FDG-PET). Methods Ten patients undergoing definitive RCT for squamous cell head-and-neck cancer (HNSCC) received repeat FMISO- and 3 Tesla T2*-weighted MRI at weeks 0, 2 and 5 during treatment and FDG-PET at baseline. Gross tumour volumes (GTV) of tumour (T), lymph nodes (LN) and hypoxic subvolumes (HSV, based on FMISO-PET) and complementary non-hypoxic subvolumes (nonHSV) were generated. Mean values for T2* and SUVmean FDG were determined. Results During RCT, marked reduction of tumour hypoxia on FMISO-PET was observed (T, LN), while mean T2* did not change significantly. At baseline, mean T2* values within HSV-T (15 ± 5 ms) were smaller compared to nonHSV-T (18 ± 3 ms; p = 0.051), whereas FDG SUVmean (12 ± 6) was significantly higher for HSV-T (12 ± 6) than for nonHSV-T (6 ± 3; p = 0.026) and higher for HSV-LN (10 ± 4) than for nonHSV-LN (5 ± 2; p ≤ 0.011). Correlation between FMISO PET and FDG PET was higher than between FMSIO PET and T2* (R2 for GTV-T (FMISO/FDG) = 0.81, R2 for GTV-T (FMISO/T2*) = 0.32). Conclusions Marked reduction of tumour hypoxia between week 0, 2 and 5 found on FMISO PET was not accompanied by a significant T2*change within GTVs over time. These results suggest a relation between tumour oxygenation status and T2* at baseline, but no simple correlation over time. Therefore, caution is warranted when using T2* as a substitute for FMISO-PET to monitor tumour hypoxia during RCT in HNSCC patients. Trial registration DRKS, DRKS00003830 . Registered 23.04.2012
    corecore