92 research outputs found

    The DESI N-body simulation project – I. Testing the robustness of simulations for the DESI dark time survey

    Get PDF
    Analysis of large galaxy surveys requires confidence in the robustness of numerical simulation methods. The simulations are used to construct mock galaxy catalogues to validate data analysis pipelines and identify potential systematics. We compare three N-body simulation codes, ABACUS, GADGET-2, and SWIFT, to investigate the regimes in which their results agree. We run N-body simulations at three different mass resolutions, 6.25 × 108, 2.11 × 109, and 5.00 × 109 h−1 M, matching phases to reduce the noise within the comparisons. We find systematic errors in the halo clustering between different codes are smaller than the Dark Energy Spectroscopic Instrument (DESI) statistical error for s > 20 h−1 Mpc in the correlation function in redshift space. Through the resolution comparison we find that simulations run with a mass resolution of 2.1 × 109 h−1 M are sufficiently converged for systematic effects in the halo clustering to be smaller than the DESI statistical error at scales larger than 20 h−1 Mpc. These findings show that the simulations are robust for extracting cosmological information from large scales which is the key goal of the DESI survey. Comparing matter power spectra, we find the codes agree to within 1 per cent for k ≀ 10 h Mpc−1. We also run a comparison of three initial condition generation codes and find good agreement. In addition, we include a quasi-N-body code, FastPM, since we plan use it for certain DESI analyses. The impact of the halo definition and galaxy–halo relation will be presented in a follow-up study

    Overview of the Dark Energy Spectroscopic Instrument

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 square degrees will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We present an overview of the instrumentation, the main technical requirements and challenges, and the current status of the project.Comment: 11 pages, 4 figure

    Preliminary Target Selection for the DESI Milky Way Survey (MWS)

    Get PDF
    International audienceThe DESI Milky Way Survey (MWS) will observe ≄\ge8 million stars between 16<r<1916 < r < 19 mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients; characterize diffuse substructure in the thick disk and stellar halo; enable the discovery of extremely metal-poor stars and other rare stellar types; and improve constraints on the Galaxy's 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-percent Survey

    Get PDF
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-percent Survey. The One-percent Survey was one of DESI’s survey validation programs conducted from 2021 April to May, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r 100 × more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-Percent Survey

    Full text link
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-Percent Survey. The One-Percent Survey was one of DESI's survey validation programs conducted from April to May 2021, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r<19.5r < 19.5 magnitude-limited BGS Bright sample and 95,499 galaxies in the fainter surface brightness and color selected BGS Faint sample over z<0.6z < 0.6. We derive pSMFs from posteriors of stellar mass, M∗M_*, inferred from DESI photometry and spectroscopy using the Hahn et al. (2022a; arXiv:2202.01809) PRObabilistic Value-Added BGS (PROVABGS) Bayesian SED modeling framework. We use a hierarchical population inference framework that statistically and rigorously propagates the M∗M_* uncertainties. Furthermore, we include correction weights that account for the selection effects and incompleteness of the BGS observations. We present the redshift evolution of the pSMF in BGS as well as the pSMFs of star-forming and quiescent galaxies classified using average specific star formation rates from PROVABGS. Overall, the pSMFs show good agreement with previous stellar mass function measurements in the literature. Our pSMFs showcase the potential and statistical power of BGS, which in its main survey will observe >100×\times more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision.Comment: 25 pages, 12 figures; data used to generate figures is available at https://doi.org/10.5281/zenodo.8018936; submitted to Ap

    DESI Observations of the Andromeda Galaxy: Revealing the Immigration History of our Nearest Neighbor

    Full text link
    We present DESI observations of the inner halo of M31, which reveal the kinematics of a recent merger - a galactic immigration event - in exquisite detail. Of the 11,416 sources studied in 3.75 hour of on-sky exposure time, 7,438 are M31 sources with well measured radial velocities. The observations reveal intricate coherent kinematic structure in the positions and velocities of individual stars: streams, wedges, and chevrons. While hints of coherent structures have been previously detected in M31, this is the first time they have been seen with such detail and clarity in a galaxy beyond the Milky Way. We find clear kinematic evidence for shell structures in the Giant Stellar Stream, the Northeast Shelf and Western Shelf regions. The kinematics are remarkably similar to the predictions of dynamical models constructed to explain the spatial morphology of the inner halo. The results are consistent with the interpretation that much of the substructure in the inner halo of M31 is produced by a single galactic immigration event 1 - 2 Gyr ago. Significant numbers of metal-rich stars ([Fe/H]>−0.5>-0.5) are present in all of the detected substructures, suggesting that the immigrating galaxy had an extended star formation history. We also investigate the ability of the shells and Giant Stellar Stream to constrain the gravitational potential of M31, and estimate the mass within a projected radius of 125 kpc to be log10 MNFW(<125 kpc)/M⊙=11.80−0.10+0.12{\rm log_{10}}\, M_{\rm NFW}(<125\,{\rm kpc})/M_\odot = 11.80_{-0.10}^{+0.12}. The results herald a new era in our ability to study stars on a galactic scale and the immigration histories of galaxies.Comment: 45 pages, 22 figures, 8 tables; Astrophysical Journal in press; Data at https://zenodo.org/record/697749
    • 

    corecore