92 research outputs found
On Applications of Campbell's Embedding Theorem
A little known theorem due to Campbell is employed to establish the local
embedding of a wide class of 4-dimensional spacetimes in 5-dimensional
Ricci-flat spaces. An embedding for the class of n-dimensional Einstein spaces
is also found. The local nature of Campbell's theorem is highlighted by
studying the embedding of some lower-dimensional spaces.Comment: 17 pages, standard Latex sourc
Scheduling science on television: A comparative analysis of the representations of science in 11 European countries
While science-in-the-media is a useful vehicle for understanding the media, few scholars have used it that way: instead, they look at science-in-the-media as a way of understanding science-in-the-media and often end up attributing characteristics to science-in-the-media that are simply characteristics of the media, rather than of the science they see there. This point of view was argued by Jane Gregory and Steve Miller in 1998 in Science in Public. Science, they concluded, is not a special case in the mass media, understanding science-in-the-media is mostly about understanding the media (Gregory and Miller, 1998: 105). More than a decade later, research that looks for patterns or even determinants of science-in-the-media, be it in press or electronic media, is still very rare. There is interest in explaining the mediaâs selection of science content from a media perspective. Instead, the search for, and analysis of, several kinds of distortions in media representations of science have been leading topics of science-in-the-media research since its beginning in the USA at the end of the 1960s and remain influential today (see Lewenstein, 1994; Weigold, 2001; Kohring, 2005 for summaries). Only a relatively small amount of research has been conducted seeking to identify factors relevant to understanding how science is treated by the mass media in general and by television in particular. The current study addresses the lack of research in this area. Our research seeks to explore which constraints national media systems place on the volume and structure of science programming in television. In simpler terms, the main question this study is trying to address is why science-in-TV in Europe appears as it does. We seek to link research focussing on the detailed analysis of science representations on television (Silverstone, 1984; Collins, 1987; Hornig, 1990; Leon, 2008), and media research focussing on the historical genesis and current political regulation of national media systems (see for instance Hallin and Mancini, 2004; Napoli, 2004; Open Society Institute, 2005, 2008). The former studies provide deeper insights into the selection and reconstruction of scientific subject matters, which reflect and â at the same time â reinforce popular images of science. But their studies do not give much attention to production constraints or other relevant factors which could provide an insight into why media treat science as they do. The latter scholars inter alia shed light on distinct media policies in Europe which significantly influence national channel patterns. However, they do not refer to clearly defined content categories but to fairly rough distinctions such as information versus entertainment or fictional versus factual. Accordingly, we know more about historical roots and current practices of media regulation across Europe than we do about the effects of these different regimes on the provision of specific content in European societies
The Structure of the Big Bang from Higher-Dimensional Embeddings
We give relations for the embedding of spatially-flat
Friedmann-Robertson-Walker cosmological models of Einstein's theory in flat
manifolds of the type used in Kaluza-Klein theory. We present embedding
diagrams that depict different 4D universes as hypersurfaces in a higher
dimensional flat manifold. The morphology of the hypersurfaces is found to
depend on the equation of state of the matter. The hypersurfaces possess a
line-like curvature singularity infinitesimally close to the
3-surface, where is the time expired since the big bang. The family of
timelike comoving geodesics on any given hypersurface is found to have a
caustic on the singular line, which we conclude is the 5D position of the
point-like big bang.Comment: 11 pages, 5 figures, revtex4, accepted in Class. Quant. Gra
ELPA: A parallel solver for the generalized eigenvalue problem
For symmetric (hermitian) (dense or banded) matrices the computation of eigenvalues and eigenvectors Ax = λBx is an important task, e.g. in electronic structure calculations. If a larger number of eigenvectors are needed, often direct solvers are applied. On parallel architectures the ELPA implementation has proven to be very efficient, also compared to other parallel solvers like EigenExa or MAGMA. The main improvement that allows better parallel efficiency in ELPA is the two-step transformation of dense to band to tridiagonal form. This was the achievement of the ELPA project. The continuation of this project has been targeting at additional improvements like allowing monitoring and autotuning of the ELPA code, optimizing the code for different architectures, developing curtailed algorithms for banded A and B, and applying the improved code to solve typical examples in electronic structure calculations. In this paper we will present the outcome of this project
Classical and quantized aspects of dynamics in five dimensional relativity
A null path in 5D can appear as a timelike path in 4D, and for a certain
gauge in 5D the motion of a massive particle in 4D obeys the usual quantization
rule with an uncertainty-type relation. Generalizations of this result are
discussed in regard to induced-matter and membrane theory.Comment: 26 pages, in press in Class. Quant. Gra
Induced Matter and Particle Motion in Non-Compact Kaluza-Klein Gravity
We examine generalizations of the five-dimensional canonical metric by
including a dependence of the extra coordinate in the four-dimensional metric.
We discuss a more appropriate way to interpret the four-dimensional
energy-momentum tensor induced from the five-dimensional space-time and show it
can lead to quite different physical situations depending on the interpretation
chosen. Furthermore, we show that the assumption of five-dimensional null
trajectories in Kaluza-Klein gravity can correspond to either four-dimensional
massive or null trajectories when the path parameterization is chosen properly.
Retaining the extra-coordinate dependence in the metric, we show the
possibility of a cosmological variation in the rest masses of particles and a
consequent departure from four-dimensional geodesic motion by a geometric
force. In the examples given, we show that at late times it is possible for
particles traveling along 5D null geodesics to be in a frame consistent with
the induced matter scenario.Comment: 29 pages, accepted to GR
Seminal magnetic fields from Inflato-electromagnetic Inflation
We extend some previous attempts to explain the origin and evolution of
primordial magnetic fields during inflation induced from a 5D vacuum. We show
that the usual quantum fluctuations of a generalized 5D electromagnetic field
cannot provide us with the desired magnetic seeds. We show that special fields
without propagation on the extra non-compact dimension are needed to arrive to
appreciable magnetic strengths. We also identify a new magnetic tensor field
in this kind of extra dimensional theories. Our results are in very
good agreement with observational requirements, in particular from TeV Blazars
and CMB radiation limits we obtain that primordial cosmological magnetic fields
should be close scale invariance.Comment: Improved version. arXiv admin note: text overlap with arXiv:1007.3891
by other author
(EIN)FACH? : KomplexitÀt, Wissen, Fortschritt und die Grenzen der Germanistik
SpĂ€testens seit den gesellschaftlichen ModernisierungsschĂŒben in den sechziger Jahren identifiziert auch die Germanistik Erkenntnis- und Wissenszuwachs, ja allgemeiner den "Fortschritt" ihres Fachs, mit KomplexitĂ€tserhöhung. Vor diesem Hintergrund erscheint es mir wenig plausibel, die seitdem erfolgten inneren Ausdifferenzierungen und interdisziplinĂ€ren GrenzĂŒberschreitungen als durch IdentitĂ€tsverlust, Zerstreuung und Desintegration gekennzeichnete Niedergangsszenarien zu beschreiben. Die VerĂ€nderungen gehorchen der immanenten Logik germanistischer Forschung, einer "disziplinierten", auf Leistung ausgerichteten, an kooperativen GroĂforschungsvorhaben partizipierenden Wissensproduktion
Cosmological constraints on f(R) gravity theories within the Palatini approach
We investigate f(R) theories of gravity within the Palatini approach and show
how one can determine the expansion history, H(a), for an arbitrary choice of
f(R). As an example, we consider cosmological constraints on such theories
arising from the supernova type Ia, large scale structure formation and cosmic
microwave background observations. We find that best fit to the data is a
non-null leading order correction to the Einstein gravity, but the current data
exhibits no significant preference over the concordance LCDM model. Our results
show that the often considered 1/R models are not compatible with the data. The
results demonstrate that the background expansion alone can act as a good
discriminator between modified gravity models when multiple data sets are used.Comment: 9 pages (A&A), 7 figures. Minor changes to text plus added some
references. Accepted for publication in A&
Flutter Investigation ASW-22BL/BLE.
For evaluating flutter proneness of the single-seated high-performance glider ASW-22BL and motor glider ASW-22BLE with 26.4 m wing span manufactured by Alexander Schleicher Segelflugzeugbau GmbH, Poppenhausen, the required investigations according to JAR-22 (Subpart D) 22.629(b)(1) have been conducted. They are based on an additional ground vibration test (ASW-22BLE) and flutter calculations up to 1.2 VD to cover the 26.4 m wing span configurations of the airplane. The significant results are summarized in this report. Requirements and recommendations are stated aiming at a reduction of flutter risk
- âŠ