1,435 research outputs found

    A Stochastic Approach to Thermal Fluctuations during a First Order Electroweak Phase Transition

    Full text link
    We investigate the role played by subcritical bubbles at the onset of the electroweak phase transition. Treating the configuration modelling the thermal fluctuations around the homogeneous zero configuration of the Higgs field as a stochastic variable, we describe its dynamics by a phenomenological Langevin equation. This approach allows to properly take into account both the effects of the thermal bath on the system: a systematic dyssipative force, which tends to erase out any initial subcritical configuration, and a random stochastic force responsible for the fluctuations. We show that the contribution to the variance \lgh\phi^2(t)\rg_V in a given volume VV from any initial subcritical configuration is quickly damped away and that, in the limit of long times, \lgh\phi^2(t)\rg_V approaches its equilibrium value provided by the stochastic force and independent from the viscosity coefficient, as predicted by the fluctuation-dissipation theorem. In agreement with some recent claims, we conclude that thermal fluctuations do not affect the nucleation of critical bubbles at the onset of the electroweak phase transition making electroweak baryogenesis scenarios still a viable possibility to explain the primordial baryon asymmetry in the Universe.Comment: Two figures: fig1.metafile and fig2.metafile. Just print them as usual file.p

    CP Violating Solitons in the Early Universe

    Get PDF
    Solitons in extensions of the Standard Model can serve as localized sources of CP violation. Depending on their stability properties, they may serve either to create or to deplete the baryon asymmetry. The conditions for existence of a particular soliton candidate, the membrane solution of the two-Higgs model, are presented. In the generic case, investigated by Bachas and Tomaras, membranes exist and are metastable for a wide range of parameters. For the more viable supersymmetric case, it is shown that the present-day existence of CP-violating membranes is experimentally excluded, but preliminary studies suggest that they may have existed in the early universe soon after the electroweak phase transition, with important consequences for the baryon asymmetry of the universe.Comment: Talk given by Ola Tornkvist, to appear in the proceedings of Fundamental Physics at the Birth of the Universe, II, in Rome, Italy, 19-24 May 1997. Revtex, 7 pages, 1 postscript figure, uses epsf.tex, aps.sty, prl.sty, preprint.sty. Preprint number correcte

    Clockwork Inflation

    Full text link
    We investigate the recently proposed clockwork mechanism delivering light degrees of freedom with suppressed interactions and show, with various examples, that it can be efficiently implemented in inflationary scenarios to generate flat inflaton potentials and small density perturbations without fine-tunings. We also study the clockwork graviton in de Sitter and, interestingly, we find that the corresponding clockwork charge is site-dependent. As a consequence, the amount of tensor modes is generically suppressed with respect to the standard cases where the clockwork set-up is not adopted. This point can be made a virtue in resurrecting models of inflation which were supposed to be ruled out because of the excessive amount of tensor modes from inflation.Comment: 19 pages, 1 fugur

    On the Inflationary Perturbations of Massive Higher-Spin Fields

    Full text link
    Cosmological perturbations of massive higher-spin fields are generated during inflation, but they decay on scales larger than the Hubble radius as a consequence of the Higuchi bound. By introducing suitable couplings to the inflaton field, we show that one can obtain statistical correlators of massive higher-spin fields which remain constant or decay very slowly outside the Hubble radius. This opens up the possibility of new observational signatures from inflation.Comment: 22 page

    The Halo Mass Function from Excursion Set Theory with a Non-Gaussian Trispectrum

    Get PDF
    A sizeable level of non-Gaussianity in the primordial cosmological perturbations may be induced by a large trispectrum, i.e. by a large connected four-point correlation function. We compute the effect of a primordial non-Gaussian trispectrum on the halo mass function, within excursion set theory. We use the formalism that we have developed in a previous series of papers and which allows us to take into account the fact that, in the presence of non-Gaussianity, the stochastic evolution of the smoothed density field, as a function of the smoothing scale, is non-markovian. In the large mass limit, the leading-order term that we find agrees with the leading-order term of the results found in the literature using a more heuristic Press-Schecther (PS)-type approach. Our approach however also allows us to evaluate consistently the subleading terms, which depend not only on the four-point cumulant but also on derivatives of the four-point correlator, and which cannot be obtained within non-Gaussian extensions of PS theory. We perform explicitly the computation up to next-to-leading order.Comment: LaTeX file, 15 page
    • …
    corecore