We investigate the role played by subcritical bubbles at the onset of the
electroweak phase transition. Treating the configuration modelling the thermal
fluctuations around the homogeneous zero configuration of the Higgs field as a
stochastic variable, we describe its dynamics by a phenomenological Langevin
equation. This approach allows to properly take into account both the effects
of the thermal bath on the system: a systematic dyssipative force, which tends
to erase out any initial subcritical configuration, and a random stochastic
force responsible for the fluctuations. We show that the contribution to the
variance \lgh\phi^2(t)\rg_V in a given volume V from any initial
subcritical configuration is quickly damped away and that, in the limit of long
times, \lgh\phi^2(t)\rg_V approaches its equilibrium value provided by the
stochastic force and independent from the viscosity coefficient, as predicted
by the fluctuation-dissipation theorem. In agreement with some recent claims,
we conclude that thermal fluctuations do not affect the nucleation of critical
bubbles at the onset of the electroweak phase transition making electroweak
baryogenesis scenarios still a viable possibility to explain the primordial
baryon asymmetry in the Universe.Comment: Two figures: fig1.metafile and fig2.metafile. Just print them as
usual file.p