18 research outputs found
FROM DISEASE TO THE GENE - Identification of arthritis-regulating loci in rats
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the peripheral joints that eventually leads to cartilage destruction and bone erosion. The causes of RA remain largely unknown, but considerable evidence suggests a multifactorial aetiology involving both environmental and genetic factors. Large efforts have been directed towards the understanding of the molecular mechanisms underlying RA. Because of the complexity of the disease in humans, animal models for RA have become attractive tools for gene-identification. Use of such models not only overcomes genetic complications, but it also permits studies under stable environmental conditions. However, so far genetic studies using animals have had only limited success. In fact, researchers have encountered significant difficulties in the analysis of complex traits. The first part of this thesis is summarizing two major problems we have faced in the past years. In the first study we investigated the genetic setup and the response towards various arthritis models of two DA rat substrains. We detected several genetic and phenotypic differences, suggesting that one of the substrains had been genetically contaminated from another rat strain. The second study is based on the observation that a spontaneous mutation in our DA rat colony results in decreased arthritis susceptibility in the DA rats. We subsequently isolated the mutation in a new substrain of DA rats, called DACP, and using genetic linkage analysis we located the mutation and identified a new quantitative trait locus (QTL) for pristaneinduced arthritis (PIA) at chromosome 9, Pia27. In the second part of this thesis, we were utilizing the traditional congenic rat strain strategy in the identification and characterization of arthritis regulating loci. The third paper investigated the influence of different genetic backgrounds on the detection of previously reported loci for PIA. We found that the arthritis-regulating gene Ncf1 as well as the major histocompatibility complex (MHC) are silent in certain genetic backgrounds, while they can be detected in other genetic setups. The fourth study describes the positional cloning of the immunoglobulin lambda light chain (Igl) locus as one locus controlling rheumatoid factor (RF) production in rats. In addition, evidence suggests that this genetic region may be associated with Ovalbumin-induced airway inflammation, an animal model for allergic bronchitis or asthma. Identification of genes involved in complex disorders such as RA will be extremely valuable in understanding disease regulating mechanisms as well as improve diagnosis and identification of specific targets for therapeutic drugs. However, the findings in this thesis demonstrate that mapping those genes is a complex and challenging process and involving various problems, such as genetic variability and complex genetic interactions
histoneHMM:Differential analysis of histone modifications with broad genomic footprints
BACKGROUND: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. RESULTS: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. CONCLUSION: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de
DA rats from two colonies differ genetically and in their arthritis susceptibility.
The arthritis-susceptible DA rat is one of the most commonly used rat strains for genetic linkage analysis and is instrumental for the identification of many genetic loci. Even though DA rats were kept as inbred lines at different institutes and suppliers, it became obvious that the various breeding stocks differed genetically. To be able to compare the results from different linkage studies it is very import to verify the genetic background of the substrains used in those studies. We performed a genetic and phenotypic analysis of two DA substrains, DA/ZtmRhd and DA/OlaHsd, and found several genetic differences. One of the allelic differences between the DA/ZtmRhd and the DA/OlaHsd strain was located at rat chromosome 3, a 17-Mb large fragment, including the peak marker of a previously identified quantitative trait locus (QTL) for collagen-induced arthritis, Cia11. In addition, the substrains exhibited a significant difference in the susceptibility to pristane-induced arthritis (PIA) and disease severity of collagen-induced arthritis and PIA. However, by generating and testing a congenic line, we could demonstrate that phenotypic differences were not due to the contaminating fragment on chromosome 3. Nevertheless, we conclude that DA substrains show distinct genetic differences and caution should be taken when comparing arthritis data from different DA substrains
Detection of arthritis-susceptibility loci, including Ncf1, and variable effects of the major histocompatibility complex region depending on genetic background in rats.
OBJECTIVE: To characterize the arthritis-modulating effects of 3 non-major histocompatibility complex (MHC) quantitative trait loci (QTLs) in rat experimental arthritis in the disease-resistant E3 strain, and to investigate the disease-modulating effects of the MHC region (RT1) in various genetic backgrounds. METHODS: A congenic fragment containing Ncf1 along with congenic fragments containing the strongest remaining loci, Pia5/Cia3 and Pia7/Cia13 on chromosome 4, were transferred from the arthritis-susceptible DA strain into the background of the completely resistant E3 strain. The arthritis-regulatory potential of the transferred alleles was evaluated by comparing the susceptibility to experimental arthritis in congenic rats with that in E3 rats. The RT1(u) haplotype from the E3 strain was transferred into the susceptible DA strain (RT1(av1)), and various F(1) and F(2) hybrids were generated to assess the effects of RT1 on arthritis susceptibility. RESULTS: The DA allele of Ncf1 did not break the arthritis resistance of the E3 rats, although it led to enhanced autoimmune B cell responses, as indicated by significantly elevated levels of anticollagen antibodies in congenic rats. Introgressing Pia5 and Pia7 loci on chromosome 4 broke the resistance to arthritis, and the MHC locus on chromosome 20 in DA rats enhanced arthritis when RT1 interacted with E3 genes. CONCLUSION: The findings in these congenic lines confirm the existence of 3 major QTLs that regulate the severity of arthritis and are sufficient to induce the transformation of a completely arthritis-resistant rat strain into an arthritis-susceptible strain. This study also reveals a dramatic difference in the arthritis-regulatory potential of the rat MHC depending on genetic background, suggesting that strong epistatic interactions occur between MHC and non-MHC genes
Positional cloning of the Igl genes controlling rheumatoid factor production and allergic bronchitis in rats
Rheumatoid factors (RF), autoantibodies that bind the Fc region of IgG, are one of the major diagnostic marker in rheumatoid arthritis (RA) but occur with lower frequency also in other infectious and inflammatory conditions. Through positional cloning of the previously described quantitative trait locus (QTL) Rf1 in congenic and advanced intercrossed rats, we identified the Ig lambda light chain locus as a locus that regulates the production of RF in rats. The congenic rats produce RF-Ig lambda and have significant higher levels of RF-IgG and RF-IgM in serum, while the DA rat has an impaired RF production and does not produces RF-Ig lambda. Thus, we could investigate the role of RF in pristane-induced arthritis (PIA) as well as ovalbumin-induced airway inflammation. We show that there was no difference in the development and severity of PIA between congenic and parental DA rats, suggesting that RIP using lambda light chains have no impact on PIA. However, the RF producing congenic rats developed a more severe airway inflammation as indicated in the significantly increased number of eosinophils in bronchoalveolar lavage fluid as well as total IgE in serum. In addition, RF congenic rats had a significantly enhanced immune response toward OVA due to increased OVA-Igk but not OVA-IgI antibodies, suggesting a possible involvement of RF in the regulation of the humoral immune response
Finemapping of the arthritis QTL Pia7 reveals co-localization with Oia2 and the APLEC locus.
In this study, we sought to determine the effect of the quantitative trait locus Pia7 on arthritis severity. The regulatory locus derived from the arthritis-resistant E3 rat strain was introgressed into the arthritis-susceptibility DA strain through continuous backcrossing. Congenic rats were studied for their susceptibility to experimental arthritis using pristane and adjuvant oil. In addition, cell number and function of various leukocyte populations were analyzed either under naive or stimulated conditions. We found that the minimal congenic fragment of DA.E3-Pia7 rats overlapped with the minimal fragment in DA.PVG-Oia2 congenic rats, which has been positionally cloned to the antigen-presenting lectin-like receptor complex (APLEC) genes. DA.E3-Pia7 congenic rats were protected from both PIA and OIA, but the protection was more pronounced in OIA. In adoptive transfer experiments we observed that the Pia7 locus controlled the priming of arthritogenic T cells and not the effector phase. In addition, Pia7 congenic rats had a significant higher frequency of B cells and granulocytes as well as TNFalpha production after stimulation, indicating a higher activation state of cells of the innate immune system. In conclusion, this study shows that the APLEC locus is a major locus regulating the severity of experimentally induced arthritis in rats.Genes and Immunity advance online publication, 4 March 2010; doi:10.1038/gene.2010.2
Endophilin A2 deficiency protects rodents from autoimmune arthritis by modulating T cell activation
The introduction of the CTLA-4 recombinant fusion protein has demonstrated therapeutic effects by selectively modulating T-cell activation in rheumatoid arthritis. Here we show, using a forward genetic approach, that a mutation in the SH3gl1 gene encoding the endocytic protein Endophilin A2 is associated with the development of arthritis in rodents. Defective expression of SH3gl1 affects T cell effector functions and alters the activation threshold of autoreactive T cells, thereby leading to complete protection from chronic autoimmune inflammatory disease in both mice and rats. We further show that SH3GL1 regulates human T cell signaling and T cell receptor internalization, and its expression is upregulated in rheumatoid arthritis patients. Collectively our data identify SH3GL1 as a key regulator of T cell activation, and as a potential target for treatment of autoimmune diseases
Natural variation of histone modification and its impact on gene expression in the rat genome
Histone modifications are epigenetic marks that play fundamental roles in many biological processes including the control of chromatin-mediated regulation of gene expression. Little is known about interindividual variability of histone modification levels across the genome and to what extent they are influenced by genetic variation. We annotated the rat genome with histone modification maps, identified differences in histone trimethyl-lysine levels among strains, and described their underlying genetic basis at the genome-wide scale using ChIP-seq in heart and liver tissues in a panel of rat recombinant inbred and their progenitor strains. We identified extensive variation of histone methylation levels among individuals and mapped hundreds of underlying cis- and trans-acting loci throughout the genome that regulate histone methylation levels in an allele-specific manner. Interestingly, most histone methylation level variation was trans-linked and the most prominent QTL identified influenced H3K4me3 levels at 899 putative promoters throughout the genome in the heart. Cis- acting variation was enriched in binding sites of distinct transcription factors in heart and liver. The integrated analysis of DNA variation together with histone methylation and gene expression levels showed that histoneQTLs are an important predictor of gene expression and that a joint analysis significantly enhanced the prediction of gene expression traits (eQTLs). Our data suggest that genetic variation has a widespread impact on histone trimethylation marks that may help to uncover novel genotype-phenotype relationships
Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy
Abstract Background Genetic variation is an important determinant of RNA transcription and splicing, which in turn contributes to variation in human traits, including cardiovascular diseases. Results Here we report the first in-depth survey of heart transcriptome variation using RNA-sequencing in 97 patients with dilated cardiomyopathy and 108 non-diseased controls. We reveal extensive differences of gene expression and splicing between dilated cardiomyopathy patients and controls, affecting known as well as novel dilated cardiomyopathy genes. Moreover, we show a widespread effect of genetic variation on the regulation of transcription, isoform usage, and allele-specific expression. Systematic annotation of genome-wide association SNPs identifies 60 functional candidate genes for heart phenotypes, representing 20% of all published heart genome-wide association loci. Focusing on the dilated cardiomyopathy phenotype we found that eQTL variants are also enriched for dilated cardiomyopathy genome-wide association signals in two independent cohorts. Conclusions RNA transcription, splicing, and allele-specific expression are each important determinants of the dilated cardiomyopathy phenotype and are controlled by genetic factors. Our results represent a powerful resource for the field of cardiovascular genetics