747 research outputs found

    Adaptive Mesh Refinement for Characteristic Grids

    Full text link
    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in 2-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null \emph{slices}. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both 2nd and 4th order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.Comment: 37 pages, 15 figures (40 eps figure files, 8 of them color; all are viewable ok in black-and-white), 1 mpeg movie, uses Springer-Verlag svjour3 document class, includes C++ source code. Changes from v1: revised in response to referee comments: many references added, new figure added to better explain the algorithm, other small changes, C++ code updated to latest versio

    The Current Status of Binary Black Hole Simulations in Numerical Relativity

    Full text link
    Since the breakthroughs in 2005 which have led to long term stable solutions of the binary black hole problem in numerical relativity, much progress has been made. I present here a short summary of the state of the field, including the capabilities of numerical relativity codes, recent physical results obtained from simulations, and improvements to the methods used to evolve and analyse binary black hole spacetimes.Comment: 14 pages; minor changes and corrections in response to referee

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Microtubule dynamics in cell division : exploring living cells with polarized light microscopy

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Cell and Developmental Biology 24 (2008): 1-28, doi:10.1146/annurev.cellbio.24.110707.175323.This Perspective is an account of my early experience while I studied the dynamic organization and behavior of the mitotic spindle and its submicroscopic filaments using polarized light microscopy. The birefringence of spindle filaments in normally dividing plant and animal cells, and those treated by various agents, revealed: A) the reality of spindle fibers and fibrils in healthy living cells; B) the labile, dynamic nature of the molecular filaments making up the spindle fibers; C) the mode of fibrogenesis and action of orienting centers; and D) force-generating properties based on the disassembly and assembly of the fibrils. These studies, which were carried out directly on living cells using improved polarizing microscopes, in fact, predicted the reversible assembly properties of isolated microtubules

    Status of NINJA: the Numerical INJection Analysis project

    Get PDF
    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise
    corecore