17 research outputs found

    Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates

    Get PDF
    We investigate experimentally the force generated by the unsteady vortex formation of low-aspect-ratio normal flat plates with one end free. The objective of this study is to determine the role of the free end, or tip, vortex. Understanding this simple case provides insight into flapping-wing propulsion, which involves the unsteady motion of low-aspect-ratio appendages. As a simple model of a propulsive half-stroke, we consider a rectangular normal flat plate undergoing a translating start-up motion in a towing tank. Digital particle image velocimetry is used to measure multiple perpendicular sections of the flow velocity and vorticity, in order to correlate vortex circulation with the measured plate force. The three-dimensional wake structure is captured using flow visualization. We show that the tip vortex produces a significant maximum in the plate force. Suppressing its formation results in a force minimum. Comparing plates of aspect ratio six and two, the flow is similar in terms of absolute distance from the tip, but evolves faster for aspect ratio two. The plate drag coefficient increases with decreasing aspect ratio

    The Unsteady Lift Produced by a Flat-Plate Wing Translating Past Finite Obstacles

    Full text link
    The unsteady lift of a high-angle-of-attack, flat-plate wing encountering finite-length obstacles is studied using towing-tank force measurements. The wing translates from rest and interacts with a rectangular channel, ceiling, or ground obstacle. Variations with angle of attack, obstacle length, mid-chord height to the obstacle, and starting distance between the wing leading edge (LE) and obstacle (typically 1 chord) are examined. For channels, as the gap height decreases, circulatory-lift peaks attributed to leading-edge vortices (LEVs) are the largest, and from the second peak onward occur earliest. This is likely from wing blockage enhancing the flow speed. The lift reduces while exiting a channel, and is lowest afterward if exiting during a lift peak. For ceilings, the first circulatory-lift maximum increases for smaller LE-to-ceiling gaps, but for gaps of 0.5 chords or less, subsequent peaks are below the no-obstacle case yet still earlier. For grounds, with lower wing height the first circulatory-lift peak is larger but the second peak's behavior varies with angle of attack, and the lift decreases near the ground end. Grounds affect peak timing the least, indicating a reduced influence on the LEV. Changing the starting distance to a channel alters the lift, likely from different LEV timing

    Optimizing Sparse RFI Prediction using Deep Learning

    Get PDF
    Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known "ground truth" dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6×105\times 10^{5} HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and F2F_{2} score of 0.75 as applied to our HERA-67 observations.Comment: 11 pages, 7 figure

    Mitigating Internal Instrument Coupling for 21 cm Cosmology. II. A Method Demonstration with the Hydrogen Epoch of Reionization Array

    Get PDF
    We present a study of internal reflection and cross-coupling systematics in Phase I of the Hydrogen Epoch of Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics and presented algorithms for modeling and removing them from the data. In this work, we apply these techniques to data from HERA's first observing season as a method demonstration. The data show evidence for systematics that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted Epoch of Reionization (EoR) line-of-sight modes in the range 0.2 h −1 Mpc−1 < k∥{k}_{\parallel } < 0.5 h −1 Mpc−1. In particular, we find evidence for nonnegligible amounts of spectral structure in the raw autocorrelations that overlaps with the EoR window and is suggestive of complex instrumental effects. Through systematic modeling on a single night of data, we find we can recover these modes in the power spectrum down to the integrated noise floor, achieving a dynamic range in the EoR window of 106 in power (mK2 units) with respect to the bright galactic foreground signal. Future work with deeper integrations will help determine whether these systematics can continue to be mitigated down to EoR levels. For future observing seasons, HERA will have upgraded analog and digital hardware to better control these systematics in the field

    Detection of Cosmic Structures using the Bispectrum Phase. II. First Results from Application to Cosmic Reionization Using the Hydrogen Epoch of Reionization Array

    Get PDF
    Characterizing the epoch of reionization (EoR) at z≳6z\gtrsim 6 via the redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern astrophysics and cosmology, and thus a key science goal of many current and planned low-frequency radio telescopes. The primary challenge to detecting this signal is the overwhelmingly bright foreground emission at these frequencies, placing stringent requirements on the knowledge of the instruments and inaccuracies in analyses. Results from these experiments have largely been limited not by thermal sensitivity but by systematics, particularly caused by the inability to calibrate the instrument to high accuracy. The interferometric bispectrum phase is immune to antenna-based calibration and errors therein, and presents an independent alternative to detect the EoR HI fluctuations while largely avoiding calibration systematics. Here, we provide a demonstration of this technique on a subset of data from the Hydrogen Epoch of Reionization Array (HERA) to place approximate constraints on the brightness temperature of the intergalactic medium (IGM). From this limited data, at z=7.7z=7.7 we infer "1σ1\sigma" upper limits on the IGM brightness temperature to be ≤316\le 316 "pseudo" mK at κ∥=0.33\kappa_\parallel=0.33 "pseudo" hh Mpc−1^{-1} (data-limited) and ≤1000\le 1000 "pseudo" mK at κ∥=0.875\kappa_\parallel=0.875 "pseudo" hh Mpc−1^{-1} (noise-limited). The "pseudo" units denote only an approximate and not an exact correspondence to the actual distance scales and brightness temperatures. By propagating models in parallel to the data analysis, we confirm that the dynamic range required to separate the cosmic HI signal from the foregrounds is similar to that in standard approaches, and the power spectrum of the bispectrum phase is still data-limited (at ≳106\gtrsim 10^6 dynamic range) indicating scope for further improvement in sensitivity as the array build-out continues.Comment: 22 pages, 12 figures (including sub-figures). Published in PhRvD. Abstract may be slightly abridged compared to the actual manuscript due to length limitations on arXi

    Validation of the HERA Phase I Epoch of Reionization 21 cm Power Spectrum Software Pipeline

    Get PDF
    We describe the validation of the HERA Phase I software pipeline by a series of modular tests, building up to an end-to-end simulation. The philosophy of this approach is to validate the software and algorithms used in the Phase I upper-limit analysis on wholly synthetic data satisfying the assumptions of that analysis, not addressing whether the actual data meet these assumptions. We discuss the organization of this validation approach, the specific modular tests performed, and the construction of the end-to-end simulations. We explicitly discuss the limitations in scope of the current simulation effort. With mock visibility data generated from a known analytic power spectrum and a wide range of realistic instrumental effects and foregrounds, we demonstrate that the current pipeline produces power spectrum estimates that are consistent with known analytic inputs to within thermal noise levels (at the 2σ level) for k > 0.2h Mpc-1 for both bands and fields considered. Our input spectrum is intentionally amplified to enable a strong "detection" at k ~ 0.2 h Mpc-1-at the level of ~25σ-with foregrounds dominating on larger scales and thermal noise dominating at smaller scales. Our pipeline is able to detect this amplified input signal after suppressing foregrounds with a dynamic range (foreground to noise ratio) of ≳107. Our validation test suite uncovered several sources of scale-independent signal loss throughout the pipeline, whose amplitude is well-characterized and accounted for in the final estimates. We conclude with a discussion of the steps required for the next round of data analysis

    Effects of model incompleteness on the drift-scan calibration of radio telescopes

    Get PDF
    Precision calibration poses challenges to experiments probing the redshifted 21-cm signal of neutral hydrogen from the Cosmic Dawn and Epoch of Reionization (z ~ 30-6). In both interferometric and global signal experiments, systematic calibration is the leading source of error. Though many aspects of calibration have been studied, the overlap between the two types of instruments has received less attention. We investigate the sky based calibration of total power measurements with a HERA dish and an EDGES-style antenna to understand the role of autocorrelations in the calibration of an interferometer and the role of sky in calibrating a total power instrument. Using simulations we study various scenarios such as time variable gain, incomplete sky calibration model, and primary beam model. We find that temporal gain drifts, sky model incompleteness, and beam inaccuracies cause biases in the receiver gain amplitude and the receiver temperature estimates. In some cases, these biases mix spectral structure between beam and sky resulting in spectrally variable gain errors. Applying the calibration method to the HERA and EDGES data, we find good agreement with calibration via the more standard methods. Although instrumental gains are consistent with beam and sky errors similar in scale to those simulated, the receiver temperatures show significant deviations from expected values. While we show that it is possible to partially mitigate biases due to model inaccuracies by incorporating a time-dependent gain model in calibration, the resulting errors on calibration products are larger and more correlated. Completely addressing these biases will require more accurate sky and primary beam models
    corecore