70 research outputs found

    Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica

    Get PDF
    A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-19845-z

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Two-dimensional crystallization of membrane proteins

    No full text

    The rhodopsin-transducin complex houses two distinct rhodopsin molecules

    No full text
    Upon illumination the visual receptor rhodopsin (Rho) transitions to the activated form Rho(∗), which binds the heterotrimeric G protein, transducin (Gt) causing GDP to GTP exchange and Gt dissociation. Using succinylated concanavalin A (sConA) as a probe, we visualized native Rho dimers solubilized in 1mM n-dodecyl-β-d-maltoside (DDM) and Rho monomers in 5mM DDM. By nucleotide depletion and affinity chromatography together with crosslinking and size exclusion chromatography, we trapped and purified nucleotide-free Rho(∗)·Gt and sConA-Rho(∗)·Gt complexes kept in solution by either DDM or lauryl-maltose-neopentyl-glycol (LMNG). The 3 D envelope calculated from projections of negatively stained Rho(∗)·Gt-LMNG complexes accommodated two Rho molecules, one Gt heterotrimer and a detergent belt. Visualization of triple sConA-Rho(∗)·Gt complexes unequivocally demonstrated a pentameric assembly of the Rho(∗)·Gt complex in which the photoactivated Rho(∗) dimer serves as a platform for binding the Gt heterotrimer. Importantly, individual monomers of the Rho(∗) dimer in the heteropentameric complex exhibited different capabilities for regeneration with either 11-cis or 9-cis-retinal

    Very high-density lipoprotein and vitellin as carriers of novel biliverdins IXα with a farnesyl side-chain presumably derived from heme A in Spodoptera littoralis.

    Get PDF
    Bilins in complex with specific proteins play key roles in many forms of life. Biliproteins have also been isolated from insects; however, structural details are rare and possible functions largely unknown. Recently, we identified a high-molecular weight biliprotein from a moth, Cerura vinula, as an arylphorin-type hexameric storage protein linked to a novel farnesyl biliverdin IXα; its unusual structure suggests formation by cleavage of mitochondrial heme A. In the present study of another moth, Spodoptera littoralis, we isolated two different biliproteins. These proteins were identified as a very high-density lipoprotein (VHDL) and as vitellin, respectively, by mass spectrometric sequencing. Both proteins are associated with three different farnesyl biliverdins IXα: the one bilin isolated from C. vinula and two new structurally closely related bilins, supposed to be intermediates of heme A degradation. The different bilin composition of the two biliproteins suggests that the presumed oxidations at the farnesyl side-chain take place mainly during egg development. The egg bilins are supposedly transferred from hemolymph VHDL to vitellin in the female. Both biliproteins show strong induced circular dichroism activity compatible with a predominance of the M-conformation of the bilins. This conformation is opposite to that of the arylphorin-type biliprotein from C. vinula. Electron microscopy of the VHDL-type biliprotein from S. littoralis provided a preliminary view of its structure as a homodimer and confirmed the biochemically determined molecular mass of ∼350 kDa. Further, images of S. littoralis hexamerins revealed a 2 × 3 construction identical to that known from the hexamerin from C. vinula

    Robust image alignment for cryogenic transmission electron microscopy

    No full text
    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. (C) 2016 Elsevier Inc. All rights reserved

    Very high-density lipoprotein and vitellin as carriers of novel biliverdins IXα with a farnesyl side-chain presumably derived from heme A in Spodoptera littoralis

    No full text
    Bilins in complex with specific proteins play key roles in many forms of life. Biliproteins have also been isolated from insects; however, structural details are rare and possible functions largely unknown. Recently, we identified a high-molecular weight biliprotein from a moth, Cerura vinula, as an arylphorin-type hexameric storage protein linked to a novel farnesyl biliverdin IXα; its unusual structure suggests formation by cleavage of mitochondrial heme A. In the present study of another moth, Spodoptera littoralis, we isolated two different biliproteins. These proteins were identified as a very high-density lipoprotein (VHDL) and as vitellin, respectively, by mass spectrometric sequencing. Both proteins are associated with three different farnesyl biliverdins IXα: the one bilin isolated from C. vinula and two new structurally closely related bilins, supposed to be intermediates of heme A degradation. The different bilin composition of the two biliproteins suggests that the presumed oxidations at the farnesyl side-chain take place mainly during egg development. The egg bilins are supposedly transferred from hemolymph VHDL to vitellin in the female. Both biliproteins show strong induced circular dichroism activity compatible with a predominance of the M-conformation of the bilins. This conformation is opposite to that of the arylphorin-type biliprotein from C. vinula. Electron microscopy of the VHDL-type biliprotein from S. littoralis provided a preliminary view of its structure as a homodimer and confirmed the biochemically determined molecular mass of ∼350 kDa. Further, images of S. littoralis hexamerins revealed a 2 × 3 construction identical to that known from the hexamerin from C. vinula

    Robust image alignment for cryogenic transmission electron microscopy

    No full text
    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro

    Optimizing the refolding conditions of self-assembling polypeptide nanoparticles that serve as repetitive antigen display systems

    No full text
    Nanoparticles show great promise as potent vaccine candidates since they are readily taken up by the antigen presenting cells of the immune system. The particle size and the density of the B cell epitopes on the surface of the particles greatly influences the strength of the humoral immune response. We have developed a novel type of nanoparticle composed of peptide building blocks (Raman et al., 2006) and have used such particles to design vaccines against malaria and SARS (Kaba et al., 2009; Pimentel et al., 2009). Here we investigate the biophysical properties and the refolding conditions of a prototype of these self-assembling polypeptide nanoparticles (SAPNs). SAPNs are formed from a peptide containing a pentameric and a trimeric coiled-coil domain. At near physiological conditions the peptide self-assembles into about 27 nm, roughly spherical SAPNs. The average size of the SAPNs increases with the salt concentration. The optimal pH for their formation is between 7.5 and 8.5, while aggregation occurs at lower and higher values. A glycerol concentration of about 5% v/v is required for the formation of SAPNs with regular spherical shapes. These studies will help to optimize the immunological properties of SAPNs
    • …
    corecore