37 research outputs found

    Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome: Alterations in composition and diversity of the intestinal microbiota in D-IBS

    Get PDF
    The intestinal microbiota has been implicated in the pathophysiology of Irritable Bowel Syndrome (IBS). Due to the variable resolutions of techniques used to characterize the intestinal microbiota, and the heterogeneity of IBS, the defined alterations of the IBS intestinal microbiota are inconsistent. We analyzed the composition of the intestinal microbiota in a defined subgroup of IBS patients (diarrhea-predominant IBS, D-IBS) using a technique that provides the deepest characterization available for complex microbial communities

    Lactobacillus acidophilus NCFM affects colonic mucosal opioid receptor expression in patients with functional abdominal pain - a randomised clinical study

    Get PDF
    In a recent double-blinded clinical trial the probiotic combination of L-NCFM and B-LBi07 reduced bloating symptoms in patients with functional bowel disorder; an effect more evident in those who reported abdominal pain. In mice, L-NCFM but not B-LBi07 induced colonic MOR and CB2 expression and reduced visceral sensitivity

    Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers

    Get PDF
    The bioavailability of soy isoflavones depends on the composition of the microflora for each subject. Bacteria act on different isoflavones with increased or reduced absorption and cause biotransformation of these compounds into metabolites with higher biological activity. S-equol is the most important metabolite and only 25–65 % of the population have the microflora that produces this compound. The presence of equol-producing bacteria in soy product consumers means that the consumption of such products for prolonged periods leads to lower cardiovascular risk, reduced incidence of prostate and breast cancer, and greater relief from symptoms related to the menopause such as hot flushes and osteoporosis

    Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms

    Get PDF

    Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children

    No full text
    The colonization pattern of intestinal microbiota during childhood may impact health later in life, but children older than 1 year are poorly studied. We followed healthy children aged 1-4 years (n=28) for up to 12 months, during which a synbiotic intervention and occasional antibiotics intake occurred, and compared them with adults from the same region. Microbiota was quantified with the HITChip phylogenetic microarray and analyzed with linear mixed effects model and other statistical approaches. Synbiotic administration increased the stability of Actinobacteria and antibiotics decreased Clostridium cluster XIVa abundance. Bacterial diversity did not increase in 1- to 5-year-old children and remained significantly lower than in adults. Actinobacteria, Bacilli and Clostridium cluster IV retained child-like abundances, whereas some other groups were converting to adult-like profiles. Microbiota stability increased, with Bacteroidetes being the main contributor. The common core of microbiota in children increased with age from 18 to 25 highly abundant genus-level taxa, including several butyrate-producing organisms, and developed toward an adult-like composition. In conclusion, intestinal microbiota is not established before 5 years of age and diversity, core microbiota and different taxa are still developing toward adult-type configuration. Discordant development patterns of bacterial phyla may reflect physiological development steps in childre
    corecore