11 research outputs found

    Estimation des précipitations sur le plateau des Guyanes par l'apport de la télédétection satellite

    No full text
    The Guiana Shield is a region that is characterized by 90% of a primary rainforest and about 20% of the world’s freshwater reserves. This natural territory, with its vast hydrographic network, shows annual rainfall intensities up to 4000 mm/year; making this plateau one of the most watered regions in the world. In addition, tropical rainfall is characterized by significant spatial and temporal variability. In addition to climate-related aspects, the impact of rainfall in this region of the world is significant in terms of energy supply (hydroelectric dams). It is therefore important to develop tools to estimate quantitatively and qualitatively and at high spatial and temporal resolution the precipitation in this area. However, this vast geographical area is characterized by a network of poorly developed and heterogeneous rain gauges, which results in a lack of knowledge of the precise spatio-temporal distribution of precipitation and their dynamics.The work carried out in this thesis aims to improve the knowledge of precipitation on the Guiana Shield by using Satellite Precipitation Product (SPP) data that offer better spatial and temporal resolution in this area than the in situ measurements, at the cost of poor quality in terms of precision.This thesis is divided into 3 parts. The first part compares the performance of four products of satellite estimates on the study area and attempts to answer the question : what is the quality of these products in the Northern Amazon and French Guiana in spatial and time dimensions ? The second part proposes a new SPP bias correction technique that proceeds in three steps: i) using rain gauges measurements to decompose the studied area into hydro climatic areas ii) parameterizing a bias correction method called quantile mapping on each of these areas iii) apply the correction method to the satellite data for each hydro-climatic area. We then try to answer the following question : does the parameterization of the quantile mapping method on different hydro-climatic areas make it possible to correct the precipitation satellite data on the study area ? After showing the interest of taking into account the different rainfall regimes to implement the QM correction method on SPP data, the third part analyzes the impact of the temporal resolution of the precipitation data used on the quality of the correction and the spatial extent of potentially correctable SPP data (SPP data on which the correction method can be applied effectively). In summary, the objective of this section is to evaluate the ability of our method to correct on a large spatial scale the bias of the TRMM-TMPA 3B42V7 data in order to make the exploitation of this product relevant for different hydrological applications.This work made it possible to correct the daily satellite series with high spatial and temporal resolution on the Guiana Shield using a new approach that uses the definition of hydro-climatic areas. The positive results in terms of reduction of the bias and the RMSE obtained, thanks to this new approach, makes possible the generalization of this new method in sparselygauged areas.Le plateau des Guyanes est une région qui est caractérisée à 90% d’une forêt tropicale primaire et compte pour environ 20% des réserves mondiales d’eau douce. Ce territoire naturel, au vaste réseau hydrographique, montre des intensités pluviométriques annuelles atteignant 4000 mm/an ; ce qui fait de ce plateau une des régions les plus arrosées du monde. De plus les précipitations tropicales sont caractérisées par une variabilité spatiale et temporelle importante. Outre les aspects liés au climat, l’impact des précipitations dans cette région du globe est important en termes d’alimentation énergétique (barrages hydroélectriques). Il est donc important de développer des outils permettant d’estimer quantitativement et qualitativement et à haute résolution spatiale et temporelle les précipitations dans cette zone. Cependant ce vaste espace géographique est caractérisé par un réseau de stations pluviométriques peu développé et hétérogène, ce qui a pour conséquence une méconnaissance de la répartition spatio-temporelle précise des précipitations et de leurs dynamiques.Les travaux réalisées dans cette thèse visent à améliorer la connaissance des précipitations sur le plateau des Guyanes grâce à l’utilisation des données de précipitations satellites (Satellite Precipitation Product : SPP) qui offrent dans cette zone une meilleure résolution spatiale et temporelle que les mesures in situ, au prix d’une qualité moindre en terme de précision.Cette thèse se divise en 3 parties. La première partie compare les performances de quatre produits d’estimations satellitaires sur la zone d’étude et tente de répondre à la question : quelle est la qualité de ces produits au Nord de l’Amazone et sur la Guyane française dans les dimensions spatiales et temporelles ? La seconde partie propose une nouvelle technique de correction de biais des SPP qui procède en trois étapes : i) utiliser les mesures in situ de précipitations pour décomposer la zone étudiée en aires hydro-climatiques ii) paramétrer une méthode de correction de biais appelée quantile mapping sur chacune de ces aires iii) appliquer la méthode de correction aux données satellitaires relatives à chaque aire hydro-climatique. On cherche alors à répondre à la question suivante : est-ce que le paramétrage de la méthode quantile mapping sur différentes aires hydro-climatiques permet de corriger les données satellitaires de précipitations sur la zone d’étude ? Après avoir montré l’intérêt de prendre en compte les différents régimes pluviométriques pour mettre en œuvre la méthode de correction QM sur des données SPP, la troisième partie analyse l’impact de la résolution temporelle des données de précipitations utilisées sur la qualité de la correction et sur l’étendue spatiale des données SPP potentiellement corrigeables (données SPP sur lesquelles la méthode de correction peut s’appliquer avec efficacité). Concrètement l’objectif de cette partie est d’évaluer la capacité de notre méthode à corriger sur une large échelle spatiale le biais des données TRMM-TMPA 3B42V7 en vue de rendre pertinente l’exploitation de ce produit pour différentes applications hydrologiques.Ce travail a permis de corriger les séries satellites journalières à haute résolution spatiale et temporelle sur le plateau des Guyanes selon une approche nouvelle qui utilise la définition de zones hydro-climatiques. Les résultats positifs en terme de réduction du biais et du RMSE obtenus grâce à cette nouvelle approche, rendent possible la généralisation de cette nouvelle méthode dans des zones peu équipées en pluviomètres

    Temporal and Spatial Assessment of Four Satellite Rainfall Estimates over French Guiana and North Brazil

    No full text
    Satellite precipitation products are a means of estimating rainfall, particularly in areas that are sparsely equipped with rain gauges. The Guiana Shield is a region vulnerable to high water episodes. Flood risk is enhanced by the concentration of population living along the main rivers. A good understanding of the regional hydro-climatic regime, as well as an accurate estimation of precipitation is therefore of great importance. Unfortunately, there are very few rain gauges available in the region. The objective of the study is then to compare satellite rainfall estimation products in order to complement the information available in situ and to perform a regional analysis of four operational precipitation estimates, by partitioning the whole area under study into a homogeneous hydro-climatic region. In this study, four satellite products have been tested, TRMM TMPA (Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis) V7 (Version 7) and RT (real time), CMORPH (Climate Prediction Center (CPC) MORPHing technique) and PERSIANN (Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network), for daily rain gauge data. Product performance is evaluated at daily and monthly scales based on various intensities and hydro-climatic regimes from 1 January 2001 to 30 December 2012 and using quantitative statistical criteria (coefficient correlation, bias, relative bias and root mean square error) and quantitative error metrics (probability of detection for rainy days and for no-rain days and the false alarm ratio). Over the entire study period, all products underestimate precipitation. The results obtained in terms of the hydro-climate show that for areas with intense convective precipitation, TMPA V7 shows a better performance than other products, especially in the estimation of extreme precipitation events. In regions along the Amazon, the use of PERSIANN is better. Finally, in the driest areas, TMPA V7 and PERSIANN show the same performance

    Rainfall estimation on the Guiana Shield by the contribution of satellite remote sensing

    No full text
    Le plateau des Guyanes est une région qui est caractérisée à 90% d’une forêt tropicale primaire et compte pour environ 20% des réserves mondiales d’eau douce. Ce territoire naturel, au vaste réseau hydrographique, montre des intensités pluviométriques annuelles atteignant 4000 mm/an ; ce qui fait de ce plateau une des régions les plus arrosées du monde. De plus les précipitations tropicales sont caractérisées par une variabilité spatiale et temporelle importante. Outre les aspects liés au climat, l’impact des précipitations dans cette région du globe est important en termes d’alimentation énergétique (barrages hydroélectriques). Il est donc important de développer des outils permettant d’estimer quantitativement et qualitativement et à haute résolution spatiale et temporelle les précipitations dans cette zone. Cependant ce vaste espace géographique est caractérisé par un réseau de stations pluviométriques peu développé et hétérogène, ce qui a pour conséquence une méconnaissance de la répartition spatio-temporelle précise des précipitations et de leurs dynamiques.Les travaux réalisées dans cette thèse visent à améliorer la connaissance des précipitations sur le plateau des Guyanes grâce à l’utilisation des données de précipitations satellites (Satellite Precipitation Product : SPP) qui offrent dans cette zone une meilleure résolution spatiale et temporelle que les mesures in situ, au prix d’une qualité moindre en terme de précision.Cette thèse se divise en 3 parties. La première partie compare les performances de quatre produits d’estimations satellitaires sur la zone d’étude et tente de répondre à la question : quelle est la qualité de ces produits au Nord de l’Amazone et sur la Guyane française dans les dimensions spatiales et temporelles ? La seconde partie propose une nouvelle technique de correction de biais des SPP qui procède en trois étapes : i) utiliser les mesures in situ de précipitations pour décomposer la zone étudiée en aires hydro-climatiques ii) paramétrer une méthode de correction de biais appelée quantile mapping sur chacune de ces aires iii) appliquer la méthode de correction aux données satellitaires relatives à chaque aire hydro-climatique. On cherche alors à répondre à la question suivante : est-ce que le paramétrage de la méthode quantile mapping sur différentes aires hydro-climatiques permet de corriger les données satellitaires de précipitations sur la zone d’étude ? Après avoir montré l’intérêt de prendre en compte les différents régimes pluviométriques pour mettre en œuvre la méthode de correction QM sur des données SPP, la troisième partie analyse l’impact de la résolution temporelle des données de précipitations utilisées sur la qualité de la correction et sur l’étendue spatiale des données SPP potentiellement corrigeables (données SPP sur lesquelles la méthode de correction peut s’appliquer avec efficacité). Concrètement l’objectif de cette partie est d’évaluer la capacité de notre méthode à corriger sur une large échelle spatiale le biais des données TRMM-TMPA 3B42V7 en vue de rendre pertinente l’exploitation de ce produit pour différentes applications hydrologiques.Ce travail a permis de corriger les séries satellites journalières à haute résolution spatiale et temporelle sur le plateau des Guyanes selon une approche nouvelle qui utilise la définition de zones hydro-climatiques. Les résultats positifs en terme de réduction du biais et du RMSE obtenus grâce à cette nouvelle approche, rendent possible la généralisation de cette nouvelle méthode dans des zones peu équipées en pluviomètres.The Guiana Shield is a region that is characterized by 90% of a primary rainforest and about 20% of the world’s freshwater reserves. This natural territory, with its vast hydrographic network, shows annual rainfall intensities up to 4000 mm/year; making this plateau one of the most watered regions in the world. In addition, tropical rainfall is characterized by significant spatial and temporal variability. In addition to climate-related aspects, the impact of rainfall in this region of the world is significant in terms of energy supply (hydroelectric dams). It is therefore important to develop tools to estimate quantitatively and qualitatively and at high spatial and temporal resolution the precipitation in this area. However, this vast geographical area is characterized by a network of poorly developed and heterogeneous rain gauges, which results in a lack of knowledge of the precise spatio-temporal distribution of precipitation and their dynamics.The work carried out in this thesis aims to improve the knowledge of precipitation on the Guiana Shield by using Satellite Precipitation Product (SPP) data that offer better spatial and temporal resolution in this area than the in situ measurements, at the cost of poor quality in terms of precision.This thesis is divided into 3 parts. The first part compares the performance of four products of satellite estimates on the study area and attempts to answer the question : what is the quality of these products in the Northern Amazon and French Guiana in spatial and time dimensions ? The second part proposes a new SPP bias correction technique that proceeds in three steps: i) using rain gauges measurements to decompose the studied area into hydro climatic areas ii) parameterizing a bias correction method called quantile mapping on each of these areas iii) apply the correction method to the satellite data for each hydro-climatic area. We then try to answer the following question : does the parameterization of the quantile mapping method on different hydro-climatic areas make it possible to correct the precipitation satellite data on the study area ? After showing the interest of taking into account the different rainfall regimes to implement the QM correction method on SPP data, the third part analyzes the impact of the temporal resolution of the precipitation data used on the quality of the correction and the spatial extent of potentially correctable SPP data (SPP data on which the correction method can be applied effectively). In summary, the objective of this section is to evaluate the ability of our method to correct on a large spatial scale the bias of the TRMM-TMPA 3B42V7 data in order to make the exploitation of this product relevant for different hydrological applications.This work made it possible to correct the daily satellite series with high spatial and temporal resolution on the Guiana Shield using a new approach that uses the definition of hydro-climatic areas. The positive results in terms of reduction of the bias and the RMSE obtained, thanks to this new approach, makes possible the generalization of this new method in sparselygauged areas

    Retrospective and prospective study of the heat waves in West Africa

    No full text
    Les vagues de chaleur affectant les milieux tempérés ont beaucoup été étudiées surtout depuis les épisodes entraînant une surmortalité à Chicago en 1995 ou en Europe de l'Ouest en août 2003 (Bessemoulin et al., 2004 ; Black et al., 2004). Elles sont bien moins étudiées en domaine tropical, zone pourtant affectée par ces aléas surtout en saison sèche. Ce travail se propose de déterminer les conditions associées à l'occurrence des vagues de chaleur en Afrique de l'Ouest, en focalisant l'étude sur l'année 2010 à Niamey (Niger). Les données utilisées proviennent des réanalyses NCEP, couvrant l'ensemble de l'Afrique de l'Ouest ; il s'agit des données quotidiennes de différents paramètres atmosphériques (températures moyennes, maximales, minimales, vent, humidité, géopotentiels) mais aussi des données mensuelles sur la période 1948 à 2013. La méthode consiste à détecter des vagues de chaleur à partir de valeurs seuils par la méthode des percentiles adaptée de Huth et al. (2000) et de Météo-France (valeurs ≥5°C aux normales quotidiennes). Ces vagues de chaleur seront associées aux conditions climatiques de surfaces continentales aux échelles locale et régionale et à la dynamique atmosphérique d'échelle synoptique, afin de mieux comprendre l'établissement de ces extrêmes chauds affectant la santé des populations

    A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield

    No full text
    International audienceSatellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale

    Estimation of the terms acting on local 1 h surface temperature variations in Paris region: the specific contribution of clouds

    No full text
    International audienceLocal temperature variations at the surface are mainly dominated by small-scale processes coupled through the surface energy budget terms, which depend mostly on radiation availability and thus cloud processes. A method to determine each of these terms based almost exclusively on observations is presented in this paper, with the main objective to estimate their importance in hourly surface temperature variations at the SIRTA observatory, near Paris. Almost all terms are estimated from the multi-year dataset SIRTA-ReOBS, following a few parametrizations. The four main terms acting on temperature variations are radiative forcing (separated into clear-sky and cloud radiation), atmospheric heat exchange, ground heat exchange, and advection. Compared to direct measurements of hourly temperature variations, it is shown that the sum of the four terms gives a good estimate of the hourly temperature variations, allowing a better assessment of the contribution of each term to the variation, with an accurate diurnal and annual cycles representation, especially for the radiative terms. A random forest analysis shows that whatever the season, clouds are the main modulator of the clear sky radiation for 1-hour temperature variations during the day, and mainly drive these 1-hour temperature variations during the night. Then, the specific role of clouds is analyzed exclusively in cloudy conditions considering the behavior of some classical meteorological variables along with lidar profiles. Cloud radiative effect in shortwave and longwave and lidar profiles show a consistent seasonality during the daytime, with a dominance of mid- and high-level clouds detected at the SIRTA observatory, which also affects surface temperatures and upward sensible heat flux. During the nighttime, despite cloudy conditions and having a strong cloud longwave radiative effect, temperatures are the lowest and are therefore mostly controlled by larger-scale processes at this time

    Recent trends in climate variability at the local scale using 40 years of observations: the case of the Paris region of France

    Get PDF
    International audienceFor several years, global warming has been unequivocal, leading to climate change at global, regional and local scales. A good understanding of climate characteristics and local variability is important for adaptation and response. Indeed, the contribution of local processes and their understanding in the context of warming are still very little studied and poorly represented in climate models. Improving the knowledge of surface–atmosphere feedback effects at local scales is therefore important for future projections. Using observed data in the Paris region from 1979 to 2017, this study characterizes the changes observed over the last 40 years for six climatic parameters (e.g. mean, maximum and minimum air temperature at 2 m, 2 m relative and specific humidities and precipitation) at the annual and seasonal scales and in summer, regardless of large-scale circulation, with an attribution of which part of the change is linked to large-scale circulation or thermodynamic. The results show that some trends differ from the ones observed at the regional or global scale. Indeed, in the Paris region, the maximum temperature increases faster than does the minimum temperature. The most significant trends are observed in spring and in summer, with a strong increase in temperature and a very strong decrease in relative humidity, while specific humidity and precipitation show no significant trends. The summer trends can be explained more precisely using large-scale circulation, especially regarding the evolution of the precipitation and specific humidity. The analysis indicates the important role of surface–atmosphere feedback in local variability and that this feedback is amplified or inhibited in a context of global warming, especially in an urban environment

    Contribution of clouds radiative forcing to the local surface temperature variability

    No full text
    International audienceThe local contribution of clouds to the surface energy balance and temperature variability is an important topic in order to apprehend how this intake affects local climate variability and extreme events, how this contribution varies from one place to another, and how it evolves in a warming climate. The scope of this study is to understand how clouds impact temperature variability, to quantify their contribution, and to compare their effects to other surface processes. To do so, we develop a method to estimate the different terms that control temperature variability at the surface (∂T2m /∂t) by using this equation: ∂T2m /∂t=R+HA+HG+Adv where R is the radiation that is separated into the cloud term (Rcloud) and the clear sky one (RCS), HA the atmospheric heat exchange, HG the ground heat exchange, and Adv the advection. These terms are estimated hourly, almost only using direct measurements from SIRTA-ReOBS dataset (an hourly long-term multi-variables dataset retrieved from SIRTA, an observatory located in a semi-urban area 20-km South-West of Paris; Chiriaco et al., 2019) for a five-years period. The method gives good results for the hourly temperature variability, with a 0.8 correlation coefficient and a weak residual term between left part (directly measured) and right part of the equation.A bagged decision trees analysis of this equation shows that RCS dominates temperature variability during daytime and is mainly modulated by cloud radiative effect (Rcloud). During nighttime, the bagged decision trees analysis determines that Rcloud is the term controlling temperature changes. When a diurnal cycle analysis (split into seasons) is performed for each term, HA becomes an important negative modulator in the late afternoon, chiefly in spring and summer, when evaporation and thermal conduction are increased. In contrast, HG and Adv terms do not play an essential role on temperature variability at this temporal scale and their contribution is barely considerable in the one-hour variability, but still they remain necessary in order to obtain the best coefficient estimator between the directly measured observations and the method estimated. All terms except advection have a marked monthly-hourly cycle.Next steps consist in characterize the types of clouds and study their physical properties corresponding to the cases where Rcloud is significant, using the Lidar profiles also available in the SIRTA-ReOBS dataset

    Temporal and Spatial Assessment of Four Satellite Rainfall Estimates over French Guiana and North Brazil

    No full text
    International audienceSatellite precipitation products are a means of estimating rainfall, particularly in areas that are sparsely equipped with rain gauges. The Guiana Shield is a region vulnerable to high water episodes. Flood risk is enhanced by the concentration of population living along the main rivers. A good understanding of the regional hydro-climatic regime, as well as an accurate estimation of precipitation is therefore of great importance. Unfortunately, there are very few rain gauges available in the region. The objective of the study is then to compare satellite rainfall estimation products in order to complement the information available in situ and to perform a regional analysis of four operational precipitation estimates, by partitioning the whole area under study into a homogeneous hydro-climatic region. In this study, four satellite products have been tested, TRMM TMPA (Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis) V7 (Version 7) and RT (real time), CMORPH (Climate Prediction Center (CPC) MORPHing technique) and PERSIANN (Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network), for daily rain gauge data. Product performance is evaluated at daily and monthly scales based on various intensities and hydro-climatic regimes from 1 January 2001 to 30 December 2012 and using quantitative statistical criteria (coefficient correlation, bias, relative bias and root mean square error) and quantitative error metrics (probability of detection for rainy days and for no-rain days and the false alarm ratio). Over the entire study period, all products underestimate precipitation. The results obtained in terms of the hydro-climate show that for areas with intense convective precipitation, TMPA V7 shows a better performance than other products, especially in the estimation of extreme precipitation events. In regions along the Amazon, the use of PERSIANN is better. Finally, in the driest areas, TMPA V7 and PERSIANN show the same performance
    corecore