4,685 research outputs found

    Fission barriers in covariant density functional theory: extrapolation to superheavy nuclei

    Full text link
    Systematic calculations of fission barriers allowing for triaxial deformation are performed for even-even superheavy nuclei with charge number Z=112120Z=112-120 using three classes of covariant density functional models. The softness of nuclei in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers are considerably affected by triaxiality and octupole deformation. General trends of the evolution of the inner and the outer fission barrier heights are discussed as a function of the particle numbers.Comment: 24 pages, 8 tables, 12 figure

    Axially deformed relativistic Hartree Bogoliubov with separable pairing force

    Full text link
    A separable form of pairing interaction in the 1S0^{1}S_{0} channel has been introduced and successfully applied in the description of both static and dynamic properties of superfluid nuclei. By adjusting the parameters to reproduce the pairing properties of the Gogny force in nuclear matter, this separable pairing force is successful in depicting the pairing properties of ground states and vibrational excitations of spherical nuclei on almost the same footing as the original Gogny force. In this article, we extend these investigations for Relativistic Hartree Bogoliubov theory in deformed nuclei with axial symmetry (RHBZ) using the same separable pairing interaction. In order to preserve translational invariance we construct one- and two-dimensional Talmi-Moshinsky brackets for the cylindrical harmonic oscillator basis. We show that the matrix elements of this force can then be expanded in a series of separable terms. The convergence of this expansion is investigated for various deformations. We observe a relatively fast convergence. This allows for a considerable reduction in computing time as compared to RHBZ-calculations with the full Gogny force in the pairing channel. As an example we solve the RHBZ equations with this separable pairing force for the ground states of the chain of Sm-isotopes. Good agreement with the experimental data as well as with other theoretical results is achieved.Comment: 8 pages, 5 figures. accepted by Phys. Rev.

    Configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions

    Get PDF
    The framework of relativistic energy density functionals is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum projected wave functions, generated by constrained self-consistent relativistic mean-field calculations for triaxial shapes. The effects of triaxial deformation and of KK-mixing is illustrated in a study of spectroscopic properties of low-spin states in 24^{24}Mg.Comment: 15 pages, 11 figures, 4 tables, accepted for publication in Phys. Rev.

    Electromagnetic transition strengths in soft deformed nuclei

    Full text link
    Spectroscopic observables such as electromagnetic transitions strengths can be related to the properties of the intrinsic mean-field wave function when the latter are strongly deformed, but the standard rotational formulas break down when the deformation decreases. Nevertheless there is a well-defined, non-zero, spherical limit that can be evaluated in terms of overlaps of mean-field intrinsic deformed wave functions. We examine the transition between the spherical limit and strongly deformed one for a range of nuclei comparing the two limiting formulas with exact projection results. We find a simple criterion for the validity of the rotational formula depending on , the mean square fluctuation in the angular momentum of the intrinsic state. We also propose an interpolation formula which describes the transition strengths over the entire range of deformations, reducing to the two simple expressions in the appropriate limits.Comment: 16 pages, 5 figures, supplemental material include

    Entanglement generation resonances in XY chains

    Full text link
    We examine the maximum entanglement reached by an initially fully aligned state evolving in an XY Heisenberg spin chain placed in a uniform transverse magnetic field. Both the global entanglement between one qubit and the rest of the chain and the pairwise entanglement between adjacent qubits is analyzed. It is shown that in both cases the maximum is not a monotonous decreasing function of the aligning field, exhibiting instead a resonant behavior for low anisotropies, with pronounced peaks (a total of [n/2] peaks in the global entanglement for an nn-spin chain), whose width is proportional to the anisotropy and whose height remains finite in the limit of small anisotropy. It is also seen that the maximum pairwise entanglement is not a smooth function of the field even in small finite chains, where it may exhibit narrow peaks above strict plateaus. Explicit analytical results for small chains, as well as general exact results for finite n-spin chains obtained through the Jordan-Wigner mapping, are discussed

    Covariant density functional theory: The role of the pion

    Full text link
    We investigate the role of the pion in Covariant Density Functional Theory. Starting from conventional Relativistic Mean Field (RMF) theory with a non-linear coupling of the σ\sigma-meson and without exchange terms we add pions with a pseudo-vector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the non-central contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.Comment: 12 pages, 5 figure

    Dipole responses in Nd and Sm isotopes with shape transitions

    Full text link
    Photoabsorption cross sections of Nd and Sm isotopes from spherical to deformed even nuclei are systematically investigated by means of the quasiparticle-random-phase approximation based on the Hartree-Fock-Bogoliubov ground states (HFB+QRPA) using the Skyrme energy density functional. The gradual onset of deformation in the ground states as increasing the neutron number leads to characteristic features of the shape phase transition. The calculation well reproduce the isotopic dependence of broadening and emergence of a double-peak structure in the cross sections without any adjustable parameter. We also find that the deformation plays a significant role for low-energy dipole strengths. The E1E1 strengths are fragmented and considerably lowered in energy. The summed E1E1 strength up to 10 MeV is enhanced by a factor of five or more.Comment: 5 pages including 6 figure

    Beyond the relativistic mean-field approximation (II): configuration mixing of mean-field wave functions projected on angular momentum and particle number

    Get PDF
    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field + Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ\delta-interaction in the pairing channel. Illustrative calculations are performed for 24^{24}Mg, 32^{32}S and 36^{36}Ar, and compared with results obtained employing the model developed in the first part of this work, i.e. without particle-number projection, as well as with the corresponding non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 37 pages, 10 figures, submitted to Physical Review

    Beyond the relativistic mean-field approximation: configuration mixing of angular momentum projected wave functions

    Get PDF
    We report the first study of restoration of rotational symmetry and fluctuations of the quadrupole deformation in the framework of relativistic mean-field models. A model is developed which uses the generator coordinate method to perform configuration mixing calculations of angular momentum projected wave functions, calculated in a relativistic point-coupling model. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the constrained relativistic mean-field + BCS equations in an axially deformed oscillator basis. A number of illustrative calculations are performed for the nuclei 194Hg and 32Mg, in comparison with results obtained in non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 32 pages, 14 figures, submitted to Phys. Rev.

    Multipair approach to pairing in nuclei

    Full text link
    The ground state of a general pairing Hamiltonian for a finite nuclear system is constructed as a product of collective, real, distinct pairs. These are determined sequentially via an iterative variational procedure that resorts to diagonalizations of the Hamiltonian in restricted model spaces. Different applications of the method are provided that include comparisons with exact and projected BCS results. The quantities that are examined are correlation energies, occupation numbers and pair transfer matrix elements. In a first application within the picket-fence model, the method is seen to generate the exact ground state for pairing strengths confined in a given range. Further applications of the method concern pairing in spherically symmetric mean fields and include simple exactly solvable models as well as some realistic calculations for middle-shell Sn isotopes. In the latter applications, two different ways of defining the pairs are examined: either with J=0 or with no well-defined angular momentum. The second choice reveals to be more effective leading, under some circumstances, to solutions that are basically exact.Comment: To appear in Physical Review
    corecore