9,814 research outputs found

    Nodes, paranodes and neuropathies

    Get PDF
    This review summarises recent evidence supporting the involvement of the specialised nodal and perinodal domains (the paranode and juxtaparanode) of myelinated axons in the pathology of acquired, inflammatory, peripheral neuropathies.The identification of new target antigens in the inflammatory neuropathies heralds a revolution in diagnosis, and has already begun to inform increasingly targeted and individualised therapies. Rapid progress in our basic understanding of the highly specialised nodal regions of peripheral nerves serves to strengthen the links between their unique microstructural identities, functions and pathologies. In this context, the detection of autoantibodies directed against nodal and perinodal targets is likely to be of increasing clinical importance. Antiganglioside antibodies have long been used in clinical practice as diagnostic serum biomarkers, and associate with specific clinical variants but not to the common forms of either acute or chronic demyelinating autoimmune neuropathy. It is now apparent that antibodies directed against several region-specific cell adhesion molecules, including neurofascin, contactin and contactin-associated protein, can be linked to phenotypically distinct peripheral neuropathies. Importantly, the immunological characteristics of these antibodies facilitate the prediction of treatment responsiveness

    Immune cells and preterm labour:do invariant NKT cells hold the key?

    Get PDF
    We have developed our original made-to-measure (M2M) algorithm, PRIMAL, with the aim of modelling the Galactic disc from upcoming Gaia data. From a Milky Way like N-body disc galaxy simulation, we have created mock Gaia data using M0III stars as tracers, taking into account extinction and the expected Gaia errors. In PRIMAL, observables calculated from the N-body model are compared with the target stars, at the position of the target stars. Using PRIMAL, the masses of the N-body model particles are changed to reproduce the target mock data, and the gravitational potential is automatically adjusted by the changing mass of the model particles. We have also adopted a new resampling scheme for the model particles to keep the mass resolution of the N-body model relatively constant. We have applied PRIMAL to this mock Gaia data and we show that PRIMAL can recover the structure and kinematics of a Milky Way like barred spiral disc, along with the apparent bar structure and pattern speed of the bar despite the galactic extinction and the observational errors

    Cheating and the evolutionary stability of mutualisms

    Get PDF
    Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with well-developed coevolutionary theories of competition, predator–prey and host–parasite interactions. This has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent evolutionary instability. The selective advantage of 'cheating', that is, reaping mutualistic benefits while providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interaction, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show that asymmetrical competition within species for the commodities offered by mutualistic partners provides a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms. Cheating, in effect, establishes a background against which better mutualists can display any competitive superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well as to the coexistence of ecologically similar, but unrelated mutualists and cheaters

    Aspects of Quantum Gravity in Cosmology

    Get PDF
    We review some aspects of quantum gravity in the context of cosmology. In particular, we focus on models with a phenomenology accessible to current and near-future observations, as the early Universe might be our only chance to peep through the quantum gravity realm.Comment: 15 pages, 1 figure. Invited review for Modern Physics Letter A. Version 2: minor typos corrected, few references adde

    An algorithmic approach to the existence of ideal objects in commutative algebra

    Full text link
    The existence of ideal objects, such as maximal ideals in nonzero rings, plays a crucial role in commutative algebra. These are typically justified using Zorn's lemma, and thus pose a challenge from a computational point of view. Giving a constructive meaning to ideal objects is a problem which dates back to Hilbert's program, and today is still a central theme in the area of dynamical algebra, which focuses on the elimination of ideal objects via syntactic methods. In this paper, we take an alternative approach based on Kreisel's no counterexample interpretation and sequential algorithms. We first give a computational interpretation to an abstract maximality principle in the countable setting via an intuitive, state based algorithm. We then carry out a concrete case study, in which we give an algorithmic account of the result that in any commutative ring, the intersection of all prime ideals is contained in its nilradical

    Critical thermodynamics of the two-dimensional +/-J Ising spin glass

    Full text link
    We compute the exact partition function of 2d Ising spin glasses with binary couplings. In these systems, the ground state is highly degenerate and is separated from the first excited state by a gap of size 4J. Nevertheless, we find that the low temperature specific heat density scales as exp(-2J/T), corresponding to an ``effective'' gap of size 2J; in addition, an associated cross-over length scale grows as exp(J/T). We justify these scalings via the degeneracy of the low-lying excitations and by the way low energy domain walls proliferate in this model
    corecore